Calculus 131, Section 13.X Central Limit Theorem Notes by Tim Pilachowski
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 22: Bivariate Normal Distribution Distribution
6.5 Conditional Distributions General Bivariate Normal Let Z1; Z2 ∼ N (0; 1), which we will use to build a general bivariate normal Lecture 22: Bivariate Normal Distribution distribution. 1 1 2 2 f (z1; z2) = exp − (z1 + z2 ) Statistics 104 2π 2 We want to transform these unit normal distributions to have the follow Colin Rundel arbitrary parameters: µX ; µY ; σX ; σY ; ρ April 11, 2012 X = σX Z1 + µX p 2 Y = σY [ρZ1 + 1 − ρ Z2] + µY Statistics 104 (Colin Rundel) Lecture 22 April 11, 2012 1 / 22 6.5 Conditional Distributions 6.5 Conditional Distributions General Bivariate Normal - Marginals General Bivariate Normal - Cov/Corr First, lets examine the marginal distributions of X and Y , Second, we can find Cov(X ; Y ) and ρ(X ; Y ) Cov(X ; Y ) = E [(X − E(X ))(Y − E(Y ))] X = σX Z1 + µX h p i = E (σ Z + µ − µ )(σ [ρZ + 1 − ρ2Z ] + µ − µ ) = σX N (0; 1) + µX X 1 X X Y 1 2 Y Y 2 h p 2 i = N (µX ; σX ) = E (σX Z1)(σY [ρZ1 + 1 − ρ Z2]) h 2 p 2 i = σX σY E ρZ1 + 1 − ρ Z1Z2 p 2 2 Y = σY [ρZ1 + 1 − ρ Z2] + µY = σX σY ρE[Z1 ] p 2 = σX σY ρ = σY [ρN (0; 1) + 1 − ρ N (0; 1)] + µY = σ [N (0; ρ2) + N (0; 1 − ρ2)] + µ Y Y Cov(X ; Y ) ρ(X ; Y ) = = ρ = σY N (0; 1) + µY σX σY 2 = N (µY ; σY ) Statistics 104 (Colin Rundel) Lecture 22 April 11, 2012 2 / 22 Statistics 104 (Colin Rundel) Lecture 22 April 11, 2012 3 / 22 6.5 Conditional Distributions 6.5 Conditional Distributions General Bivariate Normal - RNG Multivariate Change of Variables Consequently, if we want to generate a Bivariate Normal random variable Let X1;:::; Xn have a continuous joint distribution with pdf f defined of S. -
Applied Biostatistics Mean and Standard Deviation the Mean the Median Is Not the Only Measure of Central Value for a Distribution
Health Sciences M.Sc. Programme Applied Biostatistics Mean and Standard Deviation The mean The median is not the only measure of central value for a distribution. Another is the arithmetic mean or average, usually referred to simply as the mean. This is found by taking the sum of the observations and dividing by their number. The mean is often denoted by a little bar over the symbol for the variable, e.g. x . The sample mean has much nicer mathematical properties than the median and is thus more useful for the comparison methods described later. The median is a very useful descriptive statistic, but not much used for other purposes. Median, mean and skewness The sum of the 57 FEV1s is 231.51 and hence the mean is 231.51/57 = 4.06. This is very close to the median, 4.1, so the median is within 1% of the mean. This is not so for the triglyceride data. The median triglyceride is 0.46 but the mean is 0.51, which is higher. The median is 10% away from the mean. If the distribution is symmetrical the sample mean and median will be about the same, but in a skew distribution they will not. If the distribution is skew to the right, as for serum triglyceride, the mean will be greater, if it is skew to the left the median will be greater. This is because the values in the tails affect the mean but not the median. Figure 1 shows the positions of the mean and median on the histogram of triglyceride. -
Image Segmentation Based on Histogram Analysis Utilizing the Cloud Model
Computers and Mathematics with Applications 62 (2011) 2824–2833 Contents lists available at SciVerse ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Image segmentation based on histogram analysis utilizing the cloud model Kun Qin a,∗, Kai Xu a, Feilong Liu b, Deyi Li c a School of Remote Sensing Information Engineering, Wuhan University, Wuhan, 430079, China b Bahee International, Pleasant Hill, CA 94523, USA c Beijing Institute of Electronic System Engineering, Beijing, 100039, China article info a b s t r a c t Keywords: Both the cloud model and type-2 fuzzy sets deal with the uncertainty of membership Image segmentation which traditional type-1 fuzzy sets do not consider. Type-2 fuzzy sets consider the Histogram analysis fuzziness of the membership degrees. The cloud model considers fuzziness, randomness, Cloud model Type-2 fuzzy sets and the association between them. Based on the cloud model, the paper proposes an Probability to possibility transformations image segmentation approach which considers the fuzziness and randomness in histogram analysis. For the proposed method, first, the image histogram is generated. Second, the histogram is transformed into discrete concepts expressed by cloud models. Finally, the image is segmented into corresponding regions based on these cloud models. Segmentation experiments by images with bimodal and multimodal histograms are used to compare the proposed method with some related segmentation methods, including Otsu threshold, type-2 fuzzy threshold, fuzzy C-means clustering, and Gaussian mixture models. The comparison experiments validate the proposed method. ' 2011 Elsevier Ltd. All rights reserved. 1. Introduction In order to deal with the uncertainty of image segmentation, fuzzy sets were introduced into the field of image segmentation, and some methods were proposed in the literature. -
1. How Different Is the T Distribution from the Normal?
Statistics 101–106 Lecture 7 (20 October 98) c David Pollard Page 1 Read M&M §7.1 and §7.2, ignoring starred parts. Reread M&M §3.2. The eects of estimated variances on normal approximations. t-distributions. Comparison of two means: pooling of estimates of variances, or paired observations. In Lecture 6, when discussing comparison of two Binomial proportions, I was content to estimate unknown variances when calculating statistics that were to be treated as approximately normally distributed. You might have worried about the effect of variability of the estimate. W. S. Gosset (“Student”) considered a similar problem in a very famous 1908 paper, where the role of Student’s t-distribution was first recognized. Gosset discovered that the effect of estimated variances could be described exactly in a simplified problem where n independent observations X1,...,Xn are taken from (, ) = ( + ...+ )/ a normal√ distribution, N . The sample mean, X X1 Xn n has a N(, / n) distribution. The random variable X Z = √ / n 2 2 Phas a standard normal distribution. If we estimate by the sample variance, s = ( )2/( ) i Xi X n 1 , then the resulting statistic, X T = √ s/ n no longer has a normal distribution. It has a t-distribution on n 1 degrees of freedom. Remark. I have written T , instead of the t used by M&M page 505. I find it causes confusion that t refers to both the name of the statistic and the name of its distribution. As you will soon see, the estimation of the variance has the effect of spreading out the distribution a little beyond what it would be if were used. -
Characteristics and Statistics of Digital Remote Sensing Imagery (1)
Characteristics and statistics of digital remote sensing imagery (1) Digital Images: 1 Digital Image • With raster data structure, each image is treated as an array of values of the pixels. • Image data is organized as rows and columns (or lines and pixels) start from the upper left corner of the image. • Each pixel (picture element) is treated as a separate unite. Statistics of Digital Images Help: • Look at the frequency of occurrence of individual brightness values in the image displayed • View individual pixel brightness values at specific locations or within a geographic area; • Compute univariate descriptive statistics to determine if there are unusual anomalies in the image data; and • Compute multivariate statistics to determine the amount of between-band correlation (e.g., to identify redundancy). 2 Statistics of Digital Images It is necessary to calculate fundamental univariate and multivariate statistics of the multispectral remote sensor data. This involves identification and calculation of – maximum and minimum value –the range, mean, standard deviation – between-band variance-covariance matrix – correlation matrix, and – frequencies of brightness values The results of the above can be used to produce histograms. Such statistics provide information necessary for processing and analyzing remote sensing data. A “population” is an infinite or finite set of elements. A “sample” is a subset of the elements taken from a population used to make inferences about certain characteristics of the population. (e.g., training signatures) 3 Large samples drawn randomly from natural populations usually produce a symmetrical frequency distribution. Most values are clustered around the central value, and the frequency of occurrence declines away from this central point. -
The Probability Lifesaver: Order Statistics and the Median Theorem
The Probability Lifesaver: Order Statistics and the Median Theorem Steven J. Miller December 30, 2015 Contents 1 Order Statistics and the Median Theorem 3 1.1 Definition of the Median 5 1.2 Order Statistics 10 1.3 Examples of Order Statistics 15 1.4 TheSampleDistributionoftheMedian 17 1.5 TechnicalboundsforproofofMedianTheorem 20 1.6 TheMedianofNormalRandomVariables 22 2 • Greetings again! In this supplemental chapter we develop the theory of order statistics in order to prove The Median Theorem. This is a beautiful result in its own, but also extremely important as a substitute for the Central Limit Theorem, and allows us to say non- trivial things when the CLT is unavailable. Chapter 1 Order Statistics and the Median Theorem The Central Limit Theorem is one of the gems of probability. It’s easy to use and its hypotheses are satisfied in a wealth of problems. Many courses build towards a proof of this beautiful and powerful result, as it truly is ‘central’ to the entire subject. Not to detract from the majesty of this wonderful result, however, what happens in those instances where it’s unavailable? For example, one of the key assumptions that must be met is that our random variables need to have finite higher moments, or at the very least a finite variance. What if we were to consider sums of Cauchy random variables? Is there anything we can say? This is not just a question of theoretical interest, of mathematicians generalizing for the sake of generalization. The following example from economics highlights why this chapter is more than just of theoretical interest. -
Central Limit Theorem and Its Applications to Baseball
Central Limit Theorem and Its Applications to Baseball by Nicole Anderson A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 (Honours Seminar) Lakehead University Thunder Bay, Ontario, Canada copyright c (2014) Nicole Anderson Abstract This honours project is on the Central Limit Theorem (CLT). The CLT is considered to be one of the most powerful theorems in all of statistics and probability. In probability theory, the CLT states that, given certain conditions, the sample mean of a sufficiently large number or iterates of independent random variables, each with a well-defined ex- pected value and well-defined variance, will be approximately normally distributed. In this project, a brief historical review of the CLT is provided, some basic concepts, two proofs of the CLT and several properties are discussed. As an application, we discuss how to use the CLT to study the sampling distribution of the sample mean and hypothesis testing using baseball statistics. i Acknowledgements I would like to thank my supervisor, Dr. Li, who helped me by sharing his knowledge and many resources to help make this paper come to life. I would also like to thank Dr. Adam Van Tuyl for all of his help with Latex, and support throughout this project. Thank you very much! ii Contents Abstract i Acknowledgements ii Chapter 1. Introduction 1 1. Historical Review of Central Limit Theorem 1 2. Central Limit Theorem in Practice 1 Chapter 2. Preliminaries 3 1. Definitions 3 2. Central Limit Theorem 7 Chapter 3. Proofs of Central Limit Theorem 8 1. -
Linear Regression
eesc BC 3017 statistics notes 1 LINEAR REGRESSION Systematic var iation in the true value Up to now, wehav e been thinking about measurement as sampling of values from an ensemble of all possible outcomes in order to estimate the true value (which would, according to our previous discussion, be well approximated by the mean of a very large sample). Givenasample of outcomes, we have sometimes checked the hypothesis that it is a random sample from some ensemble of outcomes, by plotting the data points against some other variable, such as ordinal position. Under the hypothesis of random selection, no clear trend should appear.Howev er, the contrary case, where one finds a clear trend, is very important. Aclear trend can be a discovery,rather than a nuisance! Whether it is adiscovery or a nuisance (or both) depends on what one finds out about the reasons underlying the trend. In either case one must be prepared to deal with trends in analyzing data. Figure 2.1 (a) shows a plot of (hypothetical) data in which there is a very clear trend. The yaxis scales concentration of coliform bacteria sampled from rivers in various regions (units are colonies per liter). The x axis is a hypothetical indexofregional urbanization, ranging from 1 to 10. The hypothetical data consist of 6 different measurements at each levelofurbanization. The mean of each set of 6 measurements givesarough estimate of the true value for coliform bacteria concentration for rivers in a region with that urbanization level. The jagged dark line drawn on the graph connects these estimates of true value and makes the trend quite clear: more extensive urbanization is associated with higher true values of bacteria concentration. -
Permutation Tests
Permutation tests Ken Rice Thomas Lumley UW Biostatistics Seattle, June 2008 Overview • Permutation tests • A mean • Smallest p-value across multiple models • Cautionary notes Testing In testing a null hypothesis we need a test statistic that will have different values under the null hypothesis and the alternatives we care about (eg a relative risk of diabetes) We then need to compute the sampling distribution of the test statistic when the null hypothesis is true. For some test statistics and some null hypotheses this can be done analytically. The p- value for the is the probability that the test statistic would be at least as extreme as we observed, if the null hypothesis is true. A permutation test gives a simple way to compute the sampling distribution for any test statistic, under the strong null hypothesis that a set of genetic variants has absolutely no effect on the outcome. Permutations To estimate the sampling distribution of the test statistic we need many samples generated under the strong null hypothesis. If the null hypothesis is true, changing the exposure would have no effect on the outcome. By randomly shuffling the exposures we can make up as many data sets as we like. If the null hypothesis is true the shuffled data sets should look like the real data, otherwise they should look different from the real data. The ranking of the real test statistic among the shuffled test statistics gives a p-value Example: null is true Data Shuffling outcomes Shuffling outcomes (ordered) gender outcome gender outcome gender outcome Example: null is false Data Shuffling outcomes Shuffling outcomes (ordered) gender outcome gender outcome gender outcome Means Our first example is a difference in mean outcome in a dominant model for a single SNP ## make up some `true' data carrier<-rep(c(0,1), c(100,200)) null.y<-rnorm(300) alt.y<-rnorm(300, mean=carrier/2) In this case we know from theory the distribution of a difference in means and we could just do a t-test. -
Lecture 4 Multivariate Normal Distribution and Multivariate CLT
Lecture 4 Multivariate normal distribution and multivariate CLT. T We start with several simple observations. If X = (x1; : : : ; xk) is a k 1 random vector then its expectation is × T EX = (Ex1; : : : ; Exk) and its covariance matrix is Cov(X) = E(X EX)(X EX)T : − − Notice that a covariance matrix is always symmetric Cov(X)T = Cov(X) and nonnegative definite, i.e. for any k 1 vector a, × a T Cov(X)a = Ea T (X EX)(X EX)T a T = E a T (X EX) 2 0: − − j − j � We will often use that for any vector X its squared length can be written as X 2 = XT X: If we multiply a random k 1 vector X by a n k matrix A then the covariancej j of Y = AX is a n n matrix × × × Cov(Y ) = EA(X EX)(X EX)T AT = ACov(X)AT : − − T Multivariate normal distribution. Let us consider a k 1 vector g = (g1; : : : ; gk) of i.i.d. standard normal random variables. The covariance of g is,× obviously, a k k identity × matrix, Cov(g) = I: Given a n k matrix A, the covariance of Ag is a n n matrix × × � := Cov(Ag) = AIAT = AAT : Definition. The distribution of a vector Ag is called a (multivariate) normal distribution with covariance � and is denoted N(0; �): One can also shift this disrtibution, the distribution of Ag + a is called a normal distri bution with mean a and covariance � and is denoted N(a; �): There is one potential problem 23 with the above definition - we assume that the distribution depends only on covariance ma trix � and does not depend on the construction, i.e. -
The Central Limit Theorem (Review)
Introduction to Confidence Intervals { Solutions STAT-UB.0103 { Statistics for Business Control and Regression Models The Central Limit Theorem (Review) 1. You draw a random sample of size n = 64 from a population with mean µ = 50 and standard deviation σ = 16. From this, you compute the sample mean, X¯. (a) What are the expectation and standard deviation of X¯? Solution: E[X¯] = µ = 50; σ 16 sd[X¯] = p = p = 2: n 64 (b) Approximately what is the probability that the sample mean is above 54? Solution: The sample mean has expectation 50 and standard deviation 2. By the central limit theorem, the sample mean is approximately normally distributed. Thus, by the empirical rule, there is roughly a 2.5% chance of being above 54 (2 standard deviations above the mean). (c) Do you need any additional assumptions for part (c) to be true? Solution: No. Since the sample size is large (n ≥ 30), the central limit theorem applies. 2. You draw a random sample of size n = 16 from a population with mean µ = 100 and standard deviation σ = 20. From this, you compute the sample mean, X¯. (a) What are the expectation and standard deviation of X¯? Solution: E[X¯] = µ = 100; σ 20 sd[X¯] = p = p = 5: n 16 (b) Approximately what is the probability that the sample mean is between 95 and 105? Solution: The sample mean has expectation 100 and standard deviation 5. If it is approximately normal, then we can use the empirical rule to say that there is a 68% of being between 95 and 105 (within one standard deviation of its expecation). -
Shinyitemanalysis for Psychometric Training and to Enforce Routine Analysis of Educational Tests
ShinyItemAnalysis for Psychometric Training and to Enforce Routine Analysis of Educational Tests Patrícia Martinková Dept. of Statistical Modelling, Institute of Computer Science, Czech Academy of Sciences College of Education, Charles University in Prague R meetup Warsaw, May 24, 2018 R meetup Warsaw, 2018 1/35 Introduction ShinyItemAnalysis Teaching psychometrics Routine analysis of tests Discussion Announcement 1: Save the date for Psychoco 2019! International Workshop on Psychometric Computing Psychoco 2019 February 21 - 22, 2019 Charles University & Czech Academy of Sciences, Prague www.psychoco.org Since 2008, the international Psychoco workshops aim at bringing together researchers working on modern techniques for the analysis of data from psychology and the social sciences (especially in R). Patrícia Martinková ShinyItemAnalysis for Psychometric Training and Test Validation R meetup Warsaw, 2018 2/35 Introduction ShinyItemAnalysis Teaching psychometrics Routine analysis of tests Discussion Announcement 2: Job offers Job offers at Institute of Computer Science: CAS-ICS Postdoctoral position (deadline: August 30) ICS Doctoral position (deadline: June 30) ICS Fellowship for junior researchers (deadline: June 30) ... further possibilities to participate on grants E-mail at [email protected] if interested in position in the area of Computational psychometrics Interdisciplinary statistics Other related disciplines Patrícia Martinková ShinyItemAnalysis for Psychometric Training and Test Validation R meetup Warsaw, 2018 3/35 Outline 1. Introduction 2. ShinyItemAnalysis 3. Teaching psychometrics 4. Routine analysis of tests 5. Discussion Introduction ShinyItemAnalysis Teaching psychometrics Routine analysis of tests Discussion Motivation To teach psychometric concepts and methods Graduate courses "IRT models", "Selected topics in psychometrics" Workshops for admission test developers Active learning approach w/ hands-on examples To enforce routine analyses of educational tests Admission tests to Czech Universities Physiology concept inventories ..