Fast Estimation of the Median Covariation Matrix with Application to Online Robust Principal Components Analysis
Fast Estimation of the Median Covariation Matrix with Application to Online Robust Principal Components Analysis Hervé Cardot, Antoine Godichon-Baggioni Institut de Mathématiques de Bourgogne, Université de Bourgogne Franche-Comté, 9, rue Alain Savary, 21078 Dijon, France July 12, 2016 Abstract The geometric median covariation matrix is a robust multivariate indicator of dis- persion which can be extended without any difficulty to functional data. We define estimators, based on recursive algorithms, that can be simply updated at each new observation and are able to deal rapidly with large samples of high dimensional data without being obliged to store all the data in memory. Asymptotic convergence prop- erties of the recursive algorithms are studied under weak conditions. The computation of the principal components can also be performed online and this approach can be useful for online outlier detection. A simulation study clearly shows that this robust indicator is a competitive alternative to minimum covariance determinant when the dimension of the data is small and robust principal components analysis based on projection pursuit and spherical projections for high dimension data. An illustration on a large sample and high dimensional dataset consisting of individual TV audiences measured at a minute scale over a period of 24 hours confirms the interest of consider- ing the robust principal components analysis based on the median covariation matrix. All studied algorithms are available in the R package Gmedian on CRAN. Keywords. Averaging, Functional data, Geometric median, Online algorithms, Online principal components, Recursive robust estimation, Stochastic gradient, Weiszfeld’s algo- arXiv:1504.02852v5 [math.ST] 9 Jul 2016 rithm.
[Show full text]