Threats to Sources of Drinking Water and Aquatic Ecosystem Health in Canada Threats to Sources of Drinking Water and Aquatic Ecosystem Health in Canada
Total Page:16
File Type:pdf, Size:1020Kb
THREATS TO SOURCES OF DRINKING WATER AND AQUATIC ECOSYSTEM HEALTH IN CANADA THREATS TO SOURCES OF DRINKING WATER AND AQUATIC ECOSYSTEM HEALTH IN CANADA NWRI Scientific Assessment Report Series No. 1 NATIONAL WATER RESEARCH INSTITUTE ENVIRONMENT CANADA © Minister of Public Works and Government Services Canada 2001 To obtain additional copies: Science Liaison Branch National Water Research Institute Environment Canada 867 Lakeshore Road, P.O. Box 5050 Burlington, ON L7R 4A6 Or download a copy in pdf format from the NWRI web site: http://www.cciw.ca/nwri/ National Library of Canada Cataloguing in Publication data Main entry under title: Threats to sources of drinking water and aquatic ecosystem health in Canada (NWRI Scientific Assessment Report Series, ISSN 1499-5905; no. 1) Issued also in French under title: Menaces pour les sources d’eau potable et les écosystèmes aquatiques au Canada. ISBN 0-662-31315-1 Cat. No. En40-237/1-2001E 1. Drinking water – – Contamination – – Canada – – Congresses. 2. Water – – Pollution – – Canada – – Congresses. 3. Water quality – – Canada – – Congresses. I. National Water Research Institute (Canada) II. Series. TD226.T47 2001 363.6’1’0971 C2001-980362-1 This report may be cited as follows: Environment Canada. 2001. Threats to Sources of Drinking Water and Aquatic Ecosystem Health in Canada. National Water Research Institute, Burlington, Ontario. NWRI Scientific Assessment Report Series No. 1. 72 p. ii Table of Contents Foreword . v Executive Summary . .. vii 1. Waterborne Pathogens . 1 2. Algal Toxins and Taste and Odour . 5 3. Pesticides . 9 4. Persistent Organic Pollutants and Mercury . 13 5. Endocrine Disrupting Substances . 17 6. Nutrients—Nitrogen and Phosphorus . 23 7. Aquatic Acidification . 27 8. Ecosystem Effects of Genetically Modified Organisms . 33 9. Municipal Wastewater Effluents . 37 10. Industrial Point Source Discharges . 41 11. Urban Runoff . 47 12. Landfills and Waste Disposal . 51 13. Agricultural and Forestry Land Use Impacts . 57 14. Natural Sources of Trace Element Contaminants . 65 15. Impacts of Dams/Diversions and Climate Change . 69 iii Foreword Scientists and managers at the National Water Research Institute identified a list of 13 water quality relat- ed threats to sources of drinking water and aquatic ecosystem health. Four of the threats: nutrients, acidification, endocrine disrupting substances (EDS) and genetically modified organisms (GMOs) were recently addressed with broad participation through workshops. The remaining nine threats were pathogens; algal toxins; pesticides; long-range atmospherically transported pollutants; municipal waste- water effluents; industrial wastewater discharges; urban runoff; solid waste management practices; and water quantity changes affecting water quality due to climate change, diversions and extreme events. To address these remaining nine threats, a Workshop was organized and facilitated by the National Water Research Institute. There were 45 participants from Environment Canada and a number of other organizations. Teams were identified for each threat and charged with preparing short draft reports on the Current Status, Trends, and Knowledge and Program Needs of each threat in Canada. Some of the threats are groupings of similar contaminants, for example pesticides, while others are sources of a mix- ture of contaminants, for example municipal wastewater effluents. Because of this, there is some over- lap between several of the identified threats, and there was considerable interaction between the teams. Subsequent to the workshop, two additional threats were identified, teams assembled and draft reports produced. These threats were aquatic ecosystem impacts of agricultural and forestry practices and naturally occurring contaminants. The Executive Summary consists of abbreviated statements on each Threat. The intent is to give a flavour of the Current Status, Trends, Knowledge and Program Needs for each threat. This is followed by the 15 reports themselves. v Executive Summary 1. Waterborne Pathogens Waterborne pathogens can pose a problem to drinking water supplies, recreational waters, and source waters for agriculture, and aquaculture. Sources of pathogens include municipal wastewater effluents, urban runoff, agricultural wastes and wildlife. A drink- ing water incident in Milwaukee in 1993 killed 54 people and made 400,000 sick. From 1974 to 1996 there have been over 200 outbreaks of infectious diseases in Canada associated with drinking water. Pathogen contamination of irrigation water or shellfish beds can also pose risks to human food supplies. In addition, declines in amphibian populations may be related to fungal or viral pathogens. There is a need to study the consequences of environmental releases of microbial pathogens because there is inadequate knowledge of the sources, occurrence, concentrations, survival and transport of specific microorganisms in the environment. Enhanced funding is needed to validate newer molecular detection tools, understand the ecology of pathogens in aquatic ecosystems, better predict disease outbreaks, and improve emergency responses. A preventive approach to pathogen pollution should be taken by Canada in the form of a source water protection program for all major freshwater bodies. 2. Algal Toxins and Taste and Odour Algal toxins in stock watering sources have killed animals and may affect their health. In Brazil, 50 people died due to algal toxins in water used for hemodialysis in 1996. Toxins can attack the liver, the nervous system or irritate skin, yet very few of these toxins have been isolated and characterized. Reliable prediction of blue-green algal blooms is rare but is thought to be related to nutrient loads. Taste and odour problems in potable water are increasing worldwide and are produced by microorganisms such as bacteria and fungi. However, the toxicological properties of taste and odour compounds are scarcely known. Taste and odour problems occur in British Columbia, the Prairie provinces, Ontario and Quebec, and their frequency is increasing. Because toxins in raw and finished water are poorly studied, there is a need to know seasonal trends in their concentration and production. The triggers for toxin-producing algal blooms need to be better understood. There is likewise a lack of knowledge of the sources and triggers of taste and odour compounds. Also, little is known of the chemistry and biological fate of taste and odour compounds, and potential health effects from their consumption, dermal contact and inhalation should be checked. Treatment technologies for drinking water plants should be optimized to deal with algal toxins and taste and odour causing compounds. 3. Pesticides Synthetic chlorinated pesticides were introduced in the 1940s and 1950s but serious environmental problems only began to be noticed in the 1960s and 1970s. There are 550 pesticide active ingredients currently registered in Canada under PCPA, and PMRA is committed to re-evaluating 400 older pesticides (registered before 1995). Groundwater and surface water contamina- tion by pesticides will likely intensify. Thus, a better understanding is needed of the sources, fate and effects of pesticides and their degradation products. Unfortunately, there is a lack of a coordinated, interjurisdictional system for monitoring pesticides in Canada. With climate change, changing agricultural practices may change pesticide use patterns. Also, the introduction of new pests to Canada may require increased targeted pesticide use. In addition, the toxicological significance of constant exposure to low levels of pesticides is unknown and research is also needed on the chemical analysis of ultra-low levels of pesticides. With recent advances in GMOs, there is a need to determine hazards of genetically expressed pesticides in crops. Research is needed on risk assessment methodologies and into the effectiveness of risk mitigation and risk management options. 4. Persistent Organic Pollutants and Mercury Persistent organic pollutants (POPs) comprise a group of chemicals that degrade slowly in the environment, bioaccumulate and have toxic properties. Substantial historical reservoirs exist for many POPs in the Canadian environment. Mercury (Hg) is a nat- ural element but behaves like a semi-volatile organic compound and is transported through the atmosphere almost entirely as gaseous mercury. Great Lakes and Arctic communities with high consumption of fish, even with low levels of POPs and Hg, can exceed tolerable daily human intakes. In biota, there has been a twofold increase from 1975 to 1995 in Hg in thick-billed murre eggs in the Arctic. New compounds such as flame retardants are used in the manufacture of plastics, paints, textiles and electri- cal devices. There has been a 65-fold increase between 1981 and 1999 of flame retardants in Lake Ontario gull eggs. Because several older pesticides can be detected in sites far removed from areas of former use, long-range atmospheric transport is indicated. Research is needed on the toxicology of individual compounds of POPs such as toxaphene and basic physical property information is needed on new POPs, especially at temperatures relevant to Canada. The capacity to link chemical measurements of POPs to biological effects needs to be strengthened. Models to predict the trends in environmental levels of old and new POPs need to be refined. There is still uncertainty about anthropogenic versus natural sources of Hg and detailed investigations of the Hg biogeochemical