Upcoming Browser DNS Changes and Impact to University IT Operations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uila Supported Apps
Uila Supported Applications and Protocols updated Oct 2020 Application/Protocol Name Full Description 01net.com 01net website, a French high-tech news site. 050 plus is a Japanese embedded smartphone application dedicated to 050 plus audio-conferencing. 0zz0.com 0zz0 is an online solution to store, send and share files 10050.net China Railcom group web portal. This protocol plug-in classifies the http traffic to the host 10086.cn. It also 10086.cn classifies the ssl traffic to the Common Name 10086.cn. 104.com Web site dedicated to job research. 1111.com.tw Website dedicated to job research in Taiwan. 114la.com Chinese web portal operated by YLMF Computer Technology Co. Chinese cloud storing system of the 115 website. It is operated by YLMF 115.com Computer Technology Co. 118114.cn Chinese booking and reservation portal. 11st.co.kr Korean shopping website 11st. It is operated by SK Planet Co. 1337x.org Bittorrent tracker search engine 139mail 139mail is a chinese webmail powered by China Mobile. 15min.lt Lithuanian news portal Chinese web portal 163. It is operated by NetEase, a company which 163.com pioneered the development of Internet in China. 17173.com Website distributing Chinese games. 17u.com Chinese online travel booking website. 20 minutes is a free, daily newspaper available in France, Spain and 20minutes Switzerland. This plugin classifies websites. 24h.com.vn Vietnamese news portal 24ora.com Aruban news portal 24sata.hr Croatian news portal 24SevenOffice 24SevenOffice is a web-based Enterprise resource planning (ERP) systems. 24ur.com Slovenian news portal 2ch.net Japanese adult videos web site 2Shared 2shared is an online space for sharing and storage. -
M3AAWG Tutorial on Third Party Recursive Resolvers and Encrypting DNS Stub Resolver-To-Recursive Resolver Traffic Version 1.0 September 2019
Messaging, Malware and Mobile Anti-Abuse Working Group M3AAWG Tutorial on Third Party Recursive Resolvers and Encrypting DNS Stub Resolver-to-Recursive Resolver Traffic Version 1.0 September 2019 The direct URL to this paper is: www.m3aawg.org/dns-crypto-tutorial Document 1 of 2: This document is intended to be accompanied by the paper “M3AAWG Companion Document: Recipes for Encrypting DNS Stub Resolver-to-Recursive Resolver Traffic (www.m3aawg.org/dns-crypto-recipes),” which provides detailed instructions and processes. This document was produced by the M3AAWG Data and Identity Protection Committee. Table of Content Executive Summary 3 Introduction 4 Recommendations for M3AAWG and Its Audiences 7 I. Is the Use of Alternative Third Party Recursive Resolvers and Encryption of Stub Resolver-to- Recursive Resolver Traffic “In-Scope" for M3AAWG Remit? 9 1. DNS Is an Operationally Critical Core Internet Protocol 9 2. DNS and Messaging/Anti-Abuse Work 9 3. User Privacy and Opposition to Pervasive Monitoring 10 4. M3AAWG Membership – Many M3AAWG Members Have a Keen Interest in This Topic 10 II. Recursive Resolvers (Default ISP, Third Party Alternatives and Dedicated Personal Recursive Resolvers) 11 5. How Do Recursive Resolvers Normally Work in an ISP Environment Today? 11 6. A Typical Day in a Typical User's Life Online: Many Different Internet Service Providers, Many Different Recursive Resolvers 12 7. How Can I Even Tell What Name Servers I Am Actually Using Right Now?" 13 8. Intentionally Configuring an Alternative Third Party Recursive Resolver 15 9. Well-Known Third Party Recursive Resolver Providers 16 10. Picking the Right Third Party Recursive Resolver Service 17 11. -
Adopting Encrypted DNS in Enterprise Environments
National Security Agency | Cybersecurity Information Adopting Encrypted DNS in Enterprise Environments Executive summary Use of the Internet relies on translating domain names (like “nsa.gov”) to Internet Protocol addresses. This is the job of the Domain Name System (DNS). In the past, DNS lookups were generally unencrypted, since they have to be handled by the network to direct traffic to the right locations. DNS over Hypertext Transfer Protocol over Transport Layer Security (HTTPS), often referred to as DNS over HTTPS (DoH), encrypts DNS requests by using HTTPS to provide privacy, integrity, and “last mile” source authentication with a client’s DNS resolver. It is useful to prevent eavesdropping and manipulation of DNS traffic. While DoH can help protect the privacy of DNS requests and the integrity of responses, enterprises that use DoH will lose some of the control needed to govern DNS usage within their networks unless they allow only their chosen DoH resolver to be used. Enterprise DNS controls can prevent numerous threat techniques used by cyber threat actors for initial access, command and control, and exfiltration. Using DoH with external resolvers can be good for home or mobile users and networks that do not use DNS security controls. For enterprise networks, however, NSA recommends using only designated enterprise DNS resolvers in order to properly leverage essential enterprise cybersecurity defenses, facilitate access to local network resources, and protect internal network information. The enterprise DNS resolver may be either an enterprise-operated DNS server or an externally hosted service. Either way, the enterprise resolver should support encrypted DNS requests, such as DoH, for local privacy and integrity protections, but all other encrypted DNS resolvers should be disabled and blocked. -
Mozilla Foundation and Subsidiary, December 31, 2018 and 2017
MOZILLA FOUNDATION AND SUBSIDIARY DECEMBER 31, 2018 AND 2017 INDEPENDENT AUDITORS’ REPORT AND CONSOLIDATED FINANCIAL STATEMENTS Mozilla Foundation and Subsidiary Independent Auditors’ Report and Consolidated Financial Statements Independent Auditors’ Report 1 - 2 Consolidated Financial Statements Consolidated Statement of Financial Position 3 Consolidated Statement of Activities and Change in Net Assets 4 Consolidated Statement of Functional Expenses 5 Consolidated Statement of Cash Flows 6 Notes to Consolidated Financial Statements 7 - 27 Independent Auditors’ Report THE BOARD OF DIRECTORS MOZILLA FOUNDATION AND SUBSIDIARY Mountain View, California Report on the Consolidated Financial Statements We have audited the accompanying consolidated financial statements of MOZILLA FOUNDATION AND SUBSIDIARY (Mozilla) which comprise the consolidated statement of financial position as of December 31, 2018 and 2017, and the related consolidated statements of activities and change in net assets, and cash flows for the years then ended, the statement of functional expenses for the year ended December 31, 2018, and the related notes to the consolidated financial statements (collectively, the financial statements). Management’s Responsibility for the Consolidated Financial Statements Management is responsible for the preparation and fair presentation of these financial statements in accordance with accounting principles generally accepted in the United States of America; this includes the design, implementation, and maintenance of internal control relevant to the preparation and fair presentation of financial statements that are free from material misstatement, whether due to fraud or error. Auditors’ Responsibility Our responsibility is to express an opinion on these financial statements based on our audits. We conducted our audits in accordance with auditing standards generally accepted in the United States of America. -
Technical Impacts of DNS Privacy and Security on Network Service Scenarios
- Technical Impacts of DNS Privacy and Security on Network Service Scenarios ATIS-I-0000079 | April 2020 Abstract The domain name system (DNS) is a key network function used to resolve domain names (e.g., atis.org) into routable addresses and other data. Most DNS signalling today is sent using protocols that do not support security provisions (e.g., cryptographic confidentiality protection and integrity protection). This may create privacy and security risks for users due to on-path nodes being able to read or modify DNS signalling. In response to these concerns, particularly for DNS privacy, new protocols have been specified that implement cryptographic DNS security. Support for these protocols is being rapidly introduced in client software (particularly web browsers) and in some DNS servers. The implementation of DNS security protocols can have a range of positive benefits, but it can also conflict with important network services that are currently widely implemented based on DNS. These services include techniques to mitigate malware and to fulfill legal obligations placed on network operators. This report describes the technical impacts of DNS security protocols in a range of network scenarios. This analysis is used to derive recommendations for deploying DNS security protocols and for further industry collaboration. The aim of these recommendations is to maximize the benefits of DNS security support while reducing problem areas. Foreword As a leading technology and solutions development organization, the Alliance for Telecommunications Industry Solutions (ATIS) brings together the top global ICT companies to advance the industry’s business priorities. ATIS’ 150 member companies are currently working to address network reliability, 5G, robocall mitigation, smart cities, artificial intelligence-enabled networks, distributed ledger/blockchain technology, cybersecurity, IoT, emergency services, quality of service, billing support, operations and much more. -
Web Browser a C-Class Article from Wikipedia, the Free Encyclopedia
Web browser A C-class article from Wikipedia, the free encyclopedia A web browser or Internet browser is a software application for retrieving, presenting, and traversing information resources on the World Wide Web. An information resource is identified by a Uniform Resource Identifier (URI) and may be a web page, image, video, or other piece of content.[1] Hyperlinks present in resources enable users to easily navigate their browsers to related resources. Although browsers are primarily intended to access the World Wide Web, they can also be used to access information provided by Web servers in private networks or files in file systems. Some browsers can also be used to save information resources to file systems. Contents 1 History 2 Function 3 Features 3.1 User interface 3.2 Privacy and security 3.3 Standards support 4 See also 5 References 6 External links History Main article: History of the web browser The history of the Web browser dates back in to the late 1980s, when a variety of technologies laid the foundation for the first Web browser, WorldWideWeb, by Tim Berners-Lee in 1991. That browser brought together a variety of existing and new software and hardware technologies. Ted Nelson and Douglas Engelbart developed the concept of hypertext long before Berners-Lee and CERN. It became the core of the World Wide Web. Berners-Lee does acknowledge Engelbart's contribution. The introduction of the NCSA Mosaic Web browser in 1993 – one of the first graphical Web browsers – led to an explosion in Web use. Marc Andreessen, the leader of the Mosaic team at NCSA, soon started his own company, named Netscape, and released the Mosaic-influenced Netscape Navigator in 1994, which quickly became the world's most popular browser, accounting for 90% of all Web use at its peak (see usage share of web browsers). -
Ikev2 Configuration for Encrypted DNS
IKEv2 Configuration for Encrypted DNS draft-btw-add-ipsecme-ike Mohamed Boucadair (Orange) Tirumaleswar Reddy (McAfee, Inc.) Dan Wing (Citrix Systems, Inc.) Valery Smyslov (ELVIS-PLUS) July 2020, IETF#108 Agenda • Context • A Sample Use Case • IKE Configuration Attribute for Encrypted DNS • Next Steps 2 Problem Description • Several schemes to encrypt DNS have been specified – DNS over TLS (RFC 7858) – DNS over DTLS (RFC 8094) – DNS over HTTPS (RFC 8484) • …And others are being specified: – DNS over QUIC (draft-ietf-dprive-dnsoquic) • How to securely provision clients to use Encrypted DNS? This use can be within or outside the IPsec tunnel 3 A Sample Use Case: DNS Offload • VPN service providers can offer publicly accessible Encrypted DNS – the split-tunnel VPN configuration allows the client to access the DoH/DoT servers hosted by the VPN provider without traversing the tunnel 4 A Sample Use Case: Protecting Internal DNS Traffic • DoH/DoT ensures DNS traffic is not susceptible to internal attacks – see draft-arkko-farrell-arch-model-t-03#section-3.2.1 • encrypted DNS can benefit to Roaming Enterprise users to enhance privacy – With DoH/DoT the visibility of DNS traffic is limited to only the parties authorized to act on the traffic (“Zero Trust Architecture”) 5 Using IKE to Configure Encrypted DNS on Clients • New configuration attribute INTERNAL_ENC_DNS is defined to convey encrypted DNS information to clients: – Encrypted DNS type (e.g., DoH/DoT) – Scope of encrypted DNS use – One or more encrypted DNS server IPv6 addresses • For IPv4 -
Paper, We Note That Work Is with Help from Volunteer OONI Probe Users
Measuring DoT/DoH Blocking Using OONI Probe: a Preliminary Study Simone Basso Open Observatory of Network Interference [email protected] Abstract—We designed DNSCheck, an active network exper- delivery networks (CDN). This fact raises concerns regarding iment to detect the blocking of DoT/DoH services. We imple- performance [25], competition, and privacy [14]. mented DNSCheck into OONI Probe, the network-interference (While DoH’s centralization and the resulting privacy con- measurement tool we develop since 2012. We compiled a list of popular DoT/DoH services and ran DNSCheck measurements cerns are not the focus of this paper, we note that work is with help from volunteer OONI Probe users. We present pre- underway to mitigate them [38] [24].) liminary results from measurements in Kazakhstan (AS48716), Simultaneously, the rollout of DoT and DoH does not Iran (AS197207), and China (AS45090). We tested 123 DoT/DoH fully solve the surveillance and censorship issues posed by services, corresponding to 461 TCP/QUIC endpoints. We found a cleartext internet. There are at least two remaining fields endpoints to fail or succeed consistently. In AS197207 (Iran), 50% of the DoT endpoints seem blocked. Otherwise, we found that could reveal the precise target of otherwise encrypted that more than 80% of the tested endpoints were always reach- communications. They are the Server Name Indication [19] able. The most frequently blocked services are Cloudflare’s and (SNI) extension inside the TLS ClientHello and the destination Google’s. In most cases, attempting to reach blocked endpoints IP address. However, in a landscape increasingly dominated by failed with a timeout. -
Internal Message
Earlier today, Mozilla Corporation CEO and Mozilla Foundation Chairwoman Mitchell Baker sent the following message to Mozilla employees. We are making significant changes at Mozilla Corporation today. Pre-COVID, our plan for 2020 was a year of change: building a better internet by accelerating product value in Firefox, increasing innovation, and adjusting our finances to ensure financial stability over the long term. We started with immediate cost-saving measures such as pausing our hiring, reducing our wellness stipend and cancelling our All-Hands. But COVID-19 has accelerated the need and magnified the depth for these changes. Our pre-COVID plan is no longer workable. We have talked about the need for change — including the likelihood of layoffs — since the spring. Today these changes become real. We are also restructuring to put a crisper focus on new product development and go to market activities. In the long run, I am confident that the new organizational structure will serve our product and market impact goals well, but we will talk in detail about this in a bit. But, before that is the painful part. Yes — we need to reduce the size of our workforce. This is hard to internalize and I desperately wish there was some other way to set Mozilla up for success in building a better internet. I desperately wish that all those who choose Mozilla as an employer could stay as long as interest and skills connect. Unfortunately, we can’t make that happen today. We are reducing the size of the MoCo workforce by approximately 250 roles, including closing our current operations in Taipei, Taiwan. -
A Cybersecurity Terminarch: Use It Before We Lose It
SYSTEMS ATTACKS AND DEFENSES Editors: Davide Balzarotti, [email protected] | William Enck, [email protected] | Samuel King, [email protected] | Angelos Stavrou, [email protected] A Cybersecurity Terminarch: Use It Before We Lose It Eric Osterweil | George Mason University term · in · arch e /’ t re m , närk/ noun an individual that is the last of its species or subspecies. Once the terminarch dies, the species becomes extinct. hy can’t we send encrypt- in the Internet have a long history W ed email (secure, private of failure. correspondence that even our mail To date, there has only been one providers can’t read)? Why do our success story, and, fortunately, it is health-care providers require us to still operating. Today, almost ev- use secure portals to correspond erything we do online begins with a with us instead of directly emailing query to a single-rooted hierarchical us? Why are messaging apps the global database, whose namespace only way to send encrypted messag- is collision-free, and which we have es directly to friends, and why can’t relied on for more than 30 years: we send private messages without the Domain Name System (DNS). user-facing) layer(s). This has left the agreeing to using a single platform Moreover, although the DNS pro- potential to extend DNSSEC’s verifi- (WhatsApp, Signal, and so on)? Our tocol did not initially have verifica- cation protections largely untapped. cybersecurity tools have not evolved tion protections, it does now: the Moreover, the model we are using to offer these services, but why? DNS Security Extensions (DNS- exposes systemic vulnerabilities. -
4.4 IT Infrastructure 4.4.1 Does the Institution Have a Comprehensive IT
4.4 IT Infrastructure 4.4.1 Does the Institution have a comprehensive IT Policy with regard to: 1. IT Service Management ITS Centre for Dental Studies & Research is focused towards the applications of new technologies for easing up the day-to-day jobs and functions performed within and outside the campus. To achieve the same we at ITS CDSR are running many application to facilitate the routine works including the OPD & IPD, Resource management through ERP, and effective complaint handling and resolutions using Cloud Hosted Complaint Management System. Seamless 24*7 availability of Internet plays a vital role for effective use of the mentioned applications. A core IT staff team provides immediate resolutions to the user complaints and maintain the application uptime. 2. Information Security • Server Level Security: Quick Heal End Point Security Server Edition is installed on all the Servers to protect the Information from all Threats. • Client Level Security: All the desktop machines are installed with Quick Heal End Point Security to protect the client side Information from various Threats. • Network Level Security: The Campus Network is protected using UTM Device which protects the entire network from breaches and intrusion attacks from Internet. • Backups: o Server Side: Daily backups of all the Servers a taken by the Server Staff on External Hard Drives. o Client Side: Daily backups are taken by the staff members of their data on External Hard Drives. 3. Network Security • Installation of Unified Threat Management (UTM) Device: The campus wide network is protected from the Threats which propagate from Internet using the UTM device which offers following facilities: o Firewall o Gateway Level Anti-Virus o Gateway Level Anti-Spyware o Gateway Level Anti-Malware o Intrusion Detection/Prevention System o SSL and IPSec VPN’s Note: Please find detailed UTM Policy implementation for Authentication, Web & Application Filtration, Quota Management, QoS, and Data Transfer Limits in ANNEXURE I. -
Virtualviewer® HTML5 Vs PDF.Js
THETHE DOCUMENTDOCUMENT VIEWERVIEWER MATCHUP:MATCHUP: vs VirtualViewer® HTML5 vs PDF.js If you are reading this, you most likely know what a universal document viewer 1 is—software that allows users to view many different document and image DOWN formats within one single interface, eliminating the need to individually open separate applications, such as Microsoft Word and Adobe Acrobat. But not all document viewers are created equally. Like so many pieces of software and technology, the available viewers on the market range from free, open source software to high-end, powerful document viewers that can be integrated into existing content management systems and any other type of application that requires image or document viewing. As the saying goes, you get what you pay for. And when it comes to the wide array of viewers on the market, it isn’t a surprise that free, default viewers that are included in browsers and other document management systems have limited amounts of feature functionality compared to more robust document viewers. For someone simply needing to view a PDF within their internet browser, a default viewer might get the job done if you’re content to simply view and deal with the occasional unreadable document. But what about the power users? The knowledge workers in document-heavy industries such as legal, insurance, health, shipping, and government who interact with hundreds of documents daily? For these users, documents aren’t just something that need to be viewed, they also need to be managed, manipulated, annotated, distributed, and stored—among many other things. Enter: Snowbound’s pure HTML5 and feature-rich, VirtualViewer® HTML5.