Genes Diferencialmente Expressos Em Paracoccidioides Brasiliensis

Total Page:16

File Type:pdf, Size:1020Kb

Genes Diferencialmente Expressos Em Paracoccidioides Brasiliensis UNIVERSIDADEDE BRASÍLIA FACULDADEDE MEDICINA PROGRAMA DEPÓS-GRADUAÇÃO EM PATOLOGIA MOLECULAR Genes diferencialmente expressos em Paracoccidioides brasiliensis TESE DE DOUTORADO Candidato: CLAYTON LUIZBORGES Orientadora:Dra. CÉLIA MARIA DE ALMEIDA SOARES Novembro - 2008 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. UNIVERSIDADE DE BRASÍLIA FACULDADE DE MEDICINA PÓS–GRADUAÇÃO EM PATOLGIA MOLECULAR Genes diferencialmente expressos em Paracoccidioides brasiliensis Candidato: Clayton Luiz Borrges Orientadora: Profa. Dra. Célia Maria de Almeida Soares Tese apresentada ao Programa de Pós-Graduação em Patoloogia Molecular como requisito para obtenção do grau de Doutor em Patologia Molecular Brasília-DF-Brasil -2008- TRABALHO REALIZADO NO LABORATÓRIO DE BIOLOGIA MOLECULAR, DO DEPARTAMENTO DE BIOQUÍMICA E BIOLOGIA MOLECULAR, DO INSTITUTO DE CIÊNCIAS BIOLÓGICAS DA UNIVERSIDADE FEDERAL DE GOIÁS Apoio Financeiro: CNPq/ FINEP/SECTEC-GO Brasília-DF-Brasil -2008- II UNIVERSIDADE DE BRASÍLIA FACULDADE DE MEDICINA PÓS–GRADUAÇÃO EM PATOLGIA MOLECULAR BANCA EXAMINADORA TITULARES: Profa. Dra. Célia Maria de Almeida Soares Instituto de Ciências Biológicas, Universidade Federal de Goiás Profa. Dra. Patrícia Silva Cisalpino Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Prof. Dr. Cézar Martins de Sá Instituto de Ciências Biológicas, Universidade de Brasília Profa. Dra. Anamélia Lorenzetti Bocca Faculdade de Medicina, Universidade de Brasília Profa. Dra. Sílvia Maria Salem-Izacc Instituto de Ciências Biológicas, Universidade Federal de Goiás SUPLENTE Prof. Dr. Bergmann Morais Ribeiro Instituto de Ciências Biológicas, Universidade de Brasília III ʺSuperação é poder fazer acontecer com as ferramentas que temos em mãos, Superação é trabalhar da melhor forma possível independentemente do que pensem ou falem. Superação é irmos além do que os outros acham que somos capazes!!!ʺ (Autor desconhecido) ʺVencer a si próprio é a maior de todas as vitóriasʺ Platão Para ser feliz basta ter amigos, família e orgulho do que se faz... ...sou feliz! Claytim IV Amar é sentir na felicidade do outro a própria felicidade. Gottfried Wilhelm von Leibnitz Dedico este trabalho à minha família: Ao meu pai, minha referência de honestidade, amor e dedicação; e que mesmo ausente sempre esteve conosco; À minha mãe, que sem meu pai e grávida do caçula da família, não mediu esforços para nos fornecer o básico e o mais importante: o amor. À minha esposa, você é o maior exemplo de que o amor supera tudo. Você me entende, me auxilia, fica comigo e me deixa quando preciso. Sem você eu não teria chegado aqui. Nossa união é para sempre! Amo você! À minha filha, que me chamou tantas vezes para brincar, jogar vídeo‐game e passear... diante do meu não sorriu e me entendeu. Papai te ama!! Aos meus tios (Eurípedes e Desnaídes), meus “segundos pais”; vocês sempre foram uma referência para mim. Aos meus padrinhos que “andaram sumidos” e retornaram para nosso convívio familiar. Que bom! Aos meus irmãos, Alexandre e Leonardo. Alexandre, você é meu exemplo de serenidade e paciência; e você Leo, exemplo de inteligência e dedicação. Amo muito todos vocês !!! V AGRADECIMENTOS A Deus, pelas infinitas bênçãos, pela força e energia presentes todos os dias e por ter direcionado todos os meus caminhos; Há 15 anos conheci uma pessoa... eu era “office boy”. Ela viajou pro Canadá (eu ajudei a encaminhar a reserva da passagem dela)... acho que para participar de um Congresso... quando ela voltou, me trouxe um chaveiro de Vancouver; que honra!!! Depois meu chefe, o Dr. Mário Okuda, me disse: “Essa professora é umas das poucas cujo comportamento deve ser copiado aqui”... Isso me levou a querer ser assim também... Anos depois estou aqui..... Professora Drª Célia Maria de Almeida Soares, minha orientadora... você é um exemplo a ser seguido; a grande responsável pela minha formação. Com você aprendi não só a “pipetar”... aprendi que tem que se dar oportunidades para quem quer e para quem merece... aprendi que só com trabalho e muito esforço podemos ser competitivos e superar nossas dificuldades... aprendi que a cobrança é proporcional à confiança... aprendi que o bem público deve ser usado com seriedade e honestidade... Célia, sinto-me honrado de participar do seu grupo. Obrigado por tudo!!!! Nem sei como falar de uma pessoa que admiro tanto.... Meu melhor amigo, um irmão, um companheiro.... não sabe? Pergunta pra ele!!! Trabalhamos muito juntos cara... tantas noites... tantos finais de semana no laboratório... quantos congressos juntos... ainda vamos trabalhar muito juntos meu irmão. Obrigado por ser o que você é... por ter me ajudado e ter dado a oportunidade de convivermos para que pudesse aprender um pouco com você. Tenho orgulho de ser seu amigo Alex Betão! Às minhas filhinhas do coração... Elisa e Mirelle, com vocês aprendi mais do que ensinei; À Juju (minha irmãzinha) e a Fafah (um doce de pessoa). Juju, você fez tanto por mim. Muito obrigado pela convivência!!! Ao Rodriguinho, um cara muito especial, menino mais com muito potencial. Demos muitas gargalhadas juntos; VI Meus agradecimentos à Moc, minha colega na graduação, minha amiga que ajudou tanto na minha formação; Aos meus amigos Luiz (Dindin – o cara! Detalhe!) e Wesley (Tchatchá-pesquisador), vocês tornaram os momentos de trabalho muito melhores; À Dani e a Renata, pessoas muito importantes na minha formação. Tivemos bons momentos na bancada e fora dela; Aos queridos companheiros do LBM: Tereza Cristina, Nathalie, Ronney, Sara, Daciene, Milce, Karinne, Bernadette, Patrícia Lima, Mariana, Nadya, Bruno, Kelly, Ivian, Yuri, Gabi, Moniquinha, Leandro, Daiane, Hellen, Ademar, Heiko, Patrícia Kott, Rogério, Renata, Regilda, Aline, Kesser, Patrícia Zambuzzi, Amanda, Raquel, Neto, Christielly, Hérika, João Guilherme e Lidiane. Muitos alunos, muitas diferenças e muito aprendizado! Aos membros da Banca que aceitaram nosso convite para contribuir com nosso trabalho; À todos os professores do programa de Pós-Graduação em Patologia Molecular-UnB, os quais foram de suma importância na minha formação; Aos funcionários da Secretaria da Pós – Graduação em Patologia Molecular, Hérica, Alessandro e Jaqueline, sempre atenciosos, eficientes e auxiliando todos do grupo de Goiânia. À Profa. Gláucia Maria Gleibe de Oliveira, do DPP-UnB, pela presteza cordialidade; À todos os meus colegas, alunos de Mestrado e Doutorado: crescemos juntos nos trabalhos, seminários e aulas; À Dona Zildete (in memoriam) e à Dona Dora pelo auxílio prestado aos alunos; À todos os meus familiares, amigos e colegas e as pessoas que, de alguma maneira participaram desta jornada; À todos, MUIITO OBRIIGADO! VII SUMÁRIO Página Lista de Abreviaturas .............................................................................................. X Resumo ................................................................................................................... XIII Abstract................................................................................................................... XIV CAPÍTULO I I. Introdução I.1. Aspectos Gerais.................................................................................... 15 I.2. Paracoccidioidomicose.......................................................................... 15 I.3. Classificação Taxonômica..................................................................... 16 I.4. Biologia de P. brasiliensis..................................................................... 18 I.5. Dimorfismo........................................................................................... 19 I.6. Projetos Transcritomas de P. brasiliensis............................................. 22 I.7. Genes diferencialmente expressos no processo infeccioso................. 25 I.8. RDA (Análise de Diferença Representacional) no estudo de genes 27 diferencialmente expressos................................................................................... I.9. Formamidase: gene diferencialmente expresso em P. brasiliensis..... 30 II. Justificativas................................................................................................... 32 III. Objetivo Geral.............................................................................................. 33 III.1. Objetivos Específicos........................................................................ 33 CAPÍTULO II Artigos – Formamidase de P. brasiliensis ................................................. 34 Discussão.................................................................................................... 57 Conclusões.................................................................................................. 61 CAPÍTULO III Artigo – Análises transcricionais no estudo de genes diferencialmente 63 expressos em P. brasiliensis.................................................................................. Discussão.................................................................................................... 80 Conclusões.................................................................................................. 83 VIII CAPÍTULO IV Artigo com autoria compartilhada............................................................. 84 CAPÍTULO V Artigos publicados em colaboração no período de realização do Doutorado 85 CAPÍTULO VI IV. Perspectivas.......................................................................................... 86 V. Referências Bibliográficas....................................................................
Recommended publications
  • Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopa
    The Journal of Neuroscience, June 15, 2002, 22(12):5188–5197 Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopamine Agonists and Display Impaired Spatial Learning Tracy M. Reed,1,3 David R. Repaske,2* Gretchen L. Snyder,4 Paul Greengard,4 and Charles V. Vorhees1* Divisions of 1Developmental Biology and 2Endocrinology, Children’s Hospital Research Foundation, Cincinnati, Ohio 45229, 3Department of Biology, College of Mount St. Joseph, Cincinnati, Ohio 45233, and 4Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021 Using homologous recombination, we generated mice lack- maze spatial-learning deficits. These results indicate that en- ing phosphodiesterase-mediated (PDE1B) cyclic nucleotide- hancement of cyclic nucleotide signaling by inactivation of hydrolyzing activity. PDE1B Ϫ/Ϫ mice showed exaggerated PDE1B-mediated cyclic nucleotide hydrolysis plays a signifi- hyperactivity after acute D-methamphetamine administra- cant role in dopaminergic function through the DARPP-32 and tion. Striatal slices from PDE1B Ϫ/Ϫ mice exhibited increased related transduction pathways. levels of phospho-Thr 34 DARPP-32 and phospho-Ser 845 Key words: phosphodiesterases; DARPP-32; dopamine- GluR1 after dopamine D1 receptor agonist or forskolin stimu- stimulated locomotor activity; spatial learning and memory; lation. PDE1B Ϫ/Ϫ and PDE1B ϩ/Ϫ mice demonstrated Morris Morris water maze; methamphetamine; SKF81297; forskolin Calcium/calmodulin-dependent phosphodiesterases (CaM- (CaMKII) and calcineurin and have the potential to activate PDEs) are members of one of 11 families of PDEs (Soderling et CaM-PDEs. Dopamine D1 or D2 receptor activation leads to al., 1999;Yuasa et al., 2001) and comprise the only family that acts adenylyl cyclase activation or inhibition, respectively (Traficante ϩ as a potential point of interaction between the Ca 2 and cyclic et al., 1976; Monsma et al., 1990; Cunningham and Kelley, 1993; nucleotide signaling pathways.
    [Show full text]
  • N-Glycan Trimming in the ER and Calnexin/Calreticulin Cycle
    Neurotransmitter receptorsGABA and A postsynapticreceptor activation signal transmission Ligand-gated ion channel transport GABAGABA Areceptor receptor alpha-5 alpha-1/beta-1/gamma-2 subunit GABA A receptor alpha-2/beta-2/gamma-2GABA receptor alpha-4 subunit GABAGABA receptor A receptor beta-3 subunitalpha-6/beta-2/gamma-2 GABA-AGABA receptor; A receptor alpha-1/beta-2/gamma-2GABA receptoralpha-3/beta-2/gamma-2 alpha-3 subunit GABA-A GABAreceptor; receptor benzodiazepine alpha-6 subunit site GABA-AGABA-A receptor; receptor; GABA-A anion site channel (alpha1/beta2 interface) GABA-A receptor;GABA alpha-6/beta-3/gamma-2 receptor beta-2 subunit GABAGABA receptorGABA-A receptor alpha-2receptor; alpha-1 subunit agonist subunit GABA site Serotonin 3a (5-HT3a) receptor GABA receptorGABA-C rho-1 subunitreceptor GlycineSerotonin receptor subunit3 (5-HT3) alpha-1 receptor GABA receptor rho-2 subunit GlycineGlycine receptor receptor subunit subunit alpha-2 alpha-3 Ca2+ activated K+ channels Metabolism of ingested SeMet, Sec, MeSec into H2Se SmallIntermediateSmall conductance conductance conductance calcium-activated calcium-activated calcium-activated potassium potassium potassiumchannel channel protein channel protein 2 protein 1 4 Small conductance calcium-activatedCalcium-activated potassium potassium channel alpha/beta channel 1 protein 3 Calcium-activated potassiumHistamine channel subunit alpha-1 N-methyltransferase Neuraminidase Pyrimidine biosynthesis Nicotinamide N-methyltransferase Adenosylhomocysteinase PolymerasePolymeraseHistidine basic
    [Show full text]
  • Regulation of Calmodulin-Stimulated Cyclic Nucleotide Phosphodiesterase (PDE1): Review
    95-105 5/6/06 13:44 Page 95 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 18: 95-105, 2006 95 Regulation of calmodulin-stimulated cyclic nucleotide phosphodiesterase (PDE1): Review RAJENDRA K. SHARMA, SHANKAR B. DAS, ASHAKUMARY LAKSHMIKUTTYAMMA, PONNIAH SELVAKUMAR and ANURAAG SHRIVASTAV Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Cancer Research Division, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon SK S7N 4H4, Canada Received January 16, 2006; Accepted March 13, 2006 Abstract. The response of living cells to change in cell 6. Differential inhibition of PDE1 isozymes and its environment depends on the action of second messenger therapeutic applications molecules. The two second messenger molecules cAMP and 7. Role of proteolysis in regulating PDE1A2 Ca2+ regulate a large number of eukaryotic cellular events. 8. Role of PDE1A1 in ischemic-reperfused heart Calmodulin-stimulated cyclic nucleotide phosphodiesterase 9. Conclusion (PDE1) is one of the key enzymes involved in the complex interaction between cAMP and Ca2+ second messenger systems. Some PDE1 isozymes have similar kinetic and 1. Introduction immunological properties but are differentially regulated by Ca2+ and calmodulin. Accumulating evidence suggests that the A variety of cellular activities are regulated through mech- activity of PDE1 is selectively regulated by cross-talk between anisms controlling the level of cyclic nucleotides. These Ca2+ and cAMP signalling pathways. These isozymes are mechanisms include synthesis, degradation, efflux and seque- also further distinguished by various pharmacological agents. stration of cyclic adenosine 3':5'-monophosphate (cAMP) and We have demonstrated a potentially novel regulation of PDE1 cyclic guanosine 3':5'- monophosphate (cGMP) within the by calpain.
    [Show full text]
  • Analyses of PDE-Regulated Phosphoproteomes Reveal Unique and Specific Camp-Signaling Modules in T Cells
    Analyses of PDE-regulated phosphoproteomes reveal unique and specific cAMP-signaling modules in T cells Michael-Claude G. Beltejara, Ho-Tak Laua, Martin G. Golkowskia, Shao-En Onga, and Joseph A. Beavoa,1 aDepartment of Pharmacology, University of Washington, Seattle, WA 98195 Contributed by Joseph A. Beavo, May 28, 2017 (sent for review March 10, 2017; reviewed by Paul M. Epstein, Donald H. Maurice, and Kjetil Tasken) Specific functions for different cyclic nucleotide phosphodiester- to bias T-helper polarization toward Th2, Treg, or Th17 pheno- ases (PDEs) have not yet been identified in most cell types. types (13, 14). In a few cases increased cAMP may even potentiate Conventional approaches to study PDE function typically rely on the T-cell activation signal (15), particularly at early stages of measurements of global cAMP, general increases in cAMP- activation. Recent MS-based proteomic studies have been useful dependent protein kinase (PKA), or the activity of exchange in characterizing changes in the phosphoproteome of T cells under protein activated by cAMP (EPAC). Although newer approaches various stimuli such as T-cell receptor stimulation (16), prosta- using subcellularly targeted FRET reporter sensors have helped glandin signaling (17), and oxidative stress (18), so much of the define more compartmentalized regulation of cAMP, PKA, and total Jurkat phosphoproteome is known. Until now, however, no EPAC, they have limited ability to link this regulation to down- information on the regulation of phosphopeptides by PDEs has stream effector molecules and biological functions. To address this been available in these cells. problem, we have begun to use an unbiased mass spectrometry- Inhibitors of cAMP PDEs are useful tools to study PKA/EPAC- based approach coupled with treatment using PDE isozyme- mediated signaling, and selective inhibitors for each of the 11 PDE – selective inhibitors to characterize the phosphoproteomes of the families have been developed (19 21).
    [Show full text]
  • Phosphodiesterase (PDE)
    Phosphodiesterase (PDE) Phosphodiesterase (PDE) is any enzyme that breaks a phosphodiester bond. Usually, people speaking of phosphodiesterase are referring to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases. The cyclic nucleotide phosphodiesterases comprise a group of enzymes that degrade the phosphodiester bond in the second messenger molecules cAMP and cGMP. They regulate the localization, duration, and amplitude of cyclic nucleotide signaling within subcellular domains. PDEs are therefore important regulators ofsignal transduction mediated by these second messenger molecules. www.MedChemExpress.com 1 Phosphodiesterase (PDE) Inhibitors, Activators & Modulators (+)-Medioresinol Di-O-β-D-glucopyranoside (R)-(-)-Rolipram Cat. No.: HY-N8209 ((R)-Rolipram; (-)-Rolipram) Cat. No.: HY-16900A (+)-Medioresinol Di-O-β-D-glucopyranoside is a (R)-(-)-Rolipram is the R-enantiomer of Rolipram. lignan glucoside with strong inhibitory activity Rolipram is a selective inhibitor of of 3', 5'-cyclic monophosphate (cyclic AMP) phosphodiesterases PDE4 with IC50 of 3 nM, 130 nM phosphodiesterase. and 240 nM for PDE4A, PDE4B, and PDE4D, respectively. Purity: >98% Purity: 99.91% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 10 mg, 50 mg (R)-DNMDP (S)-(+)-Rolipram Cat. No.: HY-122751 ((+)-Rolipram; (S)-Rolipram) Cat. No.: HY-B0392 (R)-DNMDP is a potent and selective cancer cell (S)-(+)-Rolipram ((+)-Rolipram) is a cyclic cytotoxic agent. (R)-DNMDP, the R-form of DNMDP, AMP(cAMP)-specific phosphodiesterase (PDE) binds PDE3A directly.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Zheng Zhao, Delft University of Technology Marcel A. van den Broek, Delft University of Technology S. Aljoscha Wahl, Delft University of Technology Wilbert H. Heijne, DSM Biotechnology Center Roel A. Bovenberg, DSM Biotechnology Center Joseph J. Heijnen, Delft University of Technology An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Marco A. van den Berg, DSM Biotechnology Center Peter J.T. Verheijen, Delft University of Technology Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. PchrCyc: Penicillium rubens Wisconsin 54-1255 Cellular Overview Connections between pathways are omitted for legibility. Liang Wu, DSM Biotechnology Center Walter M. van Gulik, Delft University of Technology L-quinate phosphate a sugar a sugar a sugar a sugar multidrug multidrug a dicarboxylate phosphate a proteinogenic 2+ 2+ + met met nicotinate Mg Mg a cation a cation K + L-fucose L-fucose L-quinate L-quinate L-quinate ammonium UDP ammonium ammonium H O pro met amino acid a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar K oxaloacetate L-carnitine L-carnitine L-carnitine 2 phosphate quinic acid brain-specific hypothetical hypothetical hypothetical hypothetical
    [Show full text]
  • Phosphodiesterases Expression During Murine Cardiac Development
    International Journal of Molecular Sciences Article Phosphodiesterases Expression during Murine Cardiac Development Thays Maria da Conceição Silva Carvalho 1,†, Silvia Cardarelli 1,†, Mauro Giorgi 2, Andrea Lenzi 3, Andrea M. Isidori 3 and Fabio Naro 1,* 1 Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy; [email protected] (T.M.d.C.S.C.); [email protected] (S.C.) 2 Department of Biology and Biotechnology “C. Darwin”, Sapienza University, 00185 Rome, Italy; [email protected] 3 Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; [email protected] (A.L.); [email protected] (A.M.I.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: 30-50 cyclic nucleotide phosphodiesterases (PDEs) are a large family of enzymes playing a fundamental role in the control of intracellular levels of cAMP and cGMP. Emerging evidence suggested an important role of phosphodiesterases in heart formation, but little is known about the expression of phosphodiesterases during cardiac development. In the present study, the pattern of expression and enzymatic activity of phosphodiesterases was investigated at different stages of heart formation. C57BL/6 mice were mated and embryos were collected from 14.5 to 18.5 days of development. Data obtained by qRT-PCR and Western blot analysis showed that seven different isoforms are expressed during heart development, and PDE1C, PDE2A, PDE4D, PDE5A and PDE8A Citation: Carvalho, T.M.d.C.S.; are modulated from E14.5 to E18.5. In heart homogenates, the total cAMP and cGMP hydrolytic Cardarelli, S.; Giorgi, M.; Lenzi, A.; activity is constant at the evaluated times, and PDE4 accounts for the majority of the cAMP hydrolyz- Isidori, A.M.; Naro, F.
    [Show full text]
  • Supplementary. Table S1 a Total of Degs Detected in This Study (Gm) No
    Supplementary. Table S1 A total of DEGs detected in this study (Gm) No. genename significance in annotation 1 At1g01020 D2 ARV1__expressed protein, similar to hypothetical protein DDB0188786 [Dictyostelium discoideum] (GB:EAL62332.1); contains InterPro domain Arv1-like protein (InterPro:IPR007290) 2 At1g01100 D2 60S acidic ribosomal protein P1 (RPP1A), similar to 60S ACIDIC RIBOSOMAL PROTEIN P1 GB:O23095 from (Arabidopsis thaliana) 3 At1g01120 D2, Dm KCS1__fatty acid elongase 3-ketoacyl-CoA synthase 1 (KCS1), nearly identical to GB:AAC99312 GI:4091810 from (Arabidopsis thaliana) 4 At1g01160 D1, D2, Dm GIF2__SSXT protein-related / transcription co-activator-related, similar to SYT/SSX4 fusion protein (GI:11127695) (Homo sapiens); supporting cDNA gi:21539891:gb:AY102640.1:; contains Pfam profile PF05030: SSXT protein (N-terminal region) 5 At1g01170 D2 ozone-responsive stress-related protein, putative, similar to stress-related ozone-induced protein AtOZI1 (GI:790583) (Arabidopsis thaliana); contains 1 predicted transmembrane domain; 6 At1g01240 D1, D2, Dm expressed protein 7 At1g01300 D2, Dm aspartyl protease family protein, contains Pfam domain, PF00026: eukaryotic aspartyl protease 8 At1g01320 D2 tetratricopeptide repeat (TPR)-containing protein, low similarity to SP:P46825 Kinesin light chain (KLC) {Loligo pealeii}; contains Pfam profile PF00515: TPR Domain 9 At1g01430 D2, Dm expressed protein, similar to hypothetical protein GB:CAB80917 GI:7267605 from (Arabidopsis thaliana) 10 At1g01470 D1, D2, Dm LEA14_LSR3__late embryogenesis abundant
    [Show full text]
  • Adaptation of Camp Signaling System in SH-SY5Y Neuroblastoma Cells Following Expression of a Constitutively Active Stimulatory G Protein Alpha, Q227L Gsα
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 33, No. 1, 37-45, March 2001 Adaptation of cAMP signaling system in SH-SY5Y neuroblastoma cells following expression of a constitutively active stimulatory G protein alpha, Q227L Gsα Ik-Soon Jang1 and Yong-Sung Juhnn1,2 cAMP system adapts at the post-receptor level to a sustained activation of the system by differential ex- 1 Department of Biochemistry and Cancer Research Institute, pression of the isoforms of AC, PDE, and PKA in SH- Seoul National University College of Medicine, Seoul 110-799, SY5Y neuroblastoma. We also showed that an in- Korea crease in cellular cAMP concentration might medi- 2 Corresponding author: Tel, +82-2-740-8247; Fax, +82-2-744-4534; ate the observed changes in the cAMP system. E-mail, [email protected] Keywords: adenylate cyclase, cAMP-dependent protein Accepted 23 March, 2000 kinase, 3’,5’-cyclic-nucleotide phosphodiesterase, Pro- tein isoforms, reverse transcriptase polymerase chain Abbreviations: AC, adenylate cyclase; ACI, AC isoform I; dbcAMP, reaction dibutyryl cAMP; GAPDH, glyceraldehyde-3-phosphate dehydroge- nase; Gsα, alpha subunit of stimulatory G protein; PDE, cyclic nucleotide phosphodiesterase; PKA, cAMP-dependent protein Introduction kinase; RT-PCR, reverse transcription-polymerase chain reaction Signal transducing heterotrimeric GTP-binding proteins (G protein) relay signals from activated receptors to intracellular effectors to elicit cellular responses (Gilman, Abstract 1987). Binding of signaling molecules such as hormones Heterotrimeric GTP-binding proteins (G protein) are and neurotransmitters to the receptors makes the receptor known to participate in the transduction of signals undergo conformational change. This conformational from ligand activated receptors to effector mole- change leads to activation of G proteins by promoting cules to elicit cellular responses.
    [Show full text]
  • Genetic and Molecular Analysis of Two New Loci Controlling Flowering in Garden Pea
    Genetic and molecular analysis of two new loci controlling flowering in garden pea By A S M Mainul Hasan School of Natural Sciences Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Tasmania, July 2018 Declaration of originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledge in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Authority of access This thesis may be made available for loan. Copying and communication of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying and communication is permitted in accordance with the Copyright Act 1968. Date: 6-07-2018 A S M Mainul Hasan i Abstract Flowering is one of the key developmental process associated with the life cycle of plant and it is regulated by different environmental factors and endogenous cues. In the model species Arabidopsis thaliana a mobile protein, FLOWERING LOCUS T (FT) plays central role to mediate flowering time and expression of FT is regulated by photoperiod. While flowering mechanisms are well-understood in A. thaliana, knowledge about this process is limited in legume (family Fabaceae) which are the second major group of crops after cereals in satisfying the global demand for food and fodder.
    [Show full text]
  • A Novel Phosphodiesterase 1 Inhibitor DSR-141562 Exhibits Efficacies in Animal Models for Positive, Negative, and Cognitive Symptoms Associated with Schizophrenia S
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2019/10/02/jpet.119.260869.DC1 1521-0103/371/3/692–702$35.00 https://doi.org/10.1124/jpet.119.260869 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 371:692–702, December 2019 Copyright ª 2019 by The American Society for Pharmacology and Experimental Therapeutics A Novel Phosphodiesterase 1 Inhibitor DSR-141562 Exhibits Efficacies in Animal Models for Positive, Negative, and Cognitive Symptoms Associated with Schizophrenia s Takeshi Enomoto, Ayaka Tatara, Masao Goda, Yohei Nishizato, Kantaro Nishigori, Atsushi Kitamura, Mami Kamada, Shiori Taga, Takashi Hashimoto, Kazuhito Ikeda, and Yuki Fujii Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan Received June 17, 2019; accepted September 18, 2019 Downloaded from ABSTRACT In our drug discovery program, we identified a novel orally inhibited methamphetamine-induced locomotor hyperactivity available and brain-penetrant phosphodiesterase (PDE) 1 in rats, while it had only minimal effects on the spontaneous inhibitor, 3-methyl-7-(tetrahydro-2H-pyran-4-yl)-2-{[trans-4- locomotor activity. Furthermore, DSR-141562 at 1–100 mg/kg (trifluoromethyl)cyclohexyl]-methoxy}imidazo[5,1-f][1,2,4]triazin- did not induce any signs of catalepsy in rats. DSR-141562 at jpet.aspetjournals.org 4(3H)-one (DSR-141562). In the present study, we characterized 0.3–3 mg/kg reversed social interaction and novel object the preclinical profile of DSR-141562. This compound has recognition deficits induced by repeated treatment with an preferential selectivity for predominantly brain-expressed N-methyl-D-aspartate receptor antagonist, phencyclidine, PDE1B over other PDE1 family members, and high selectiv- in mice and rats, respectively.
    [Show full text]
  • An Evolutionary Proteomics Approach for the Identification of Pka
    AN EVOLUTIONARY PROTEOMICS APPROACH FOR THE IDENTIFICATION OF PKA TARGETS IN SACCHAROMYCES CEREVISIAE IDENTIFIES ATG1 AND ATG13, TWO PROTEINS THAT PLAY A CENTRAL ROLE IN THE REGULATION OF AUTOPHAGY BY THE RAS/PKA PATHWAY AND THE TOR PATHWAY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Joseph Stephan, MS * * * * * The Ohio State University 2008 Dissertation Committee: Approved by Name: Dr. Paul Herman Name: Dr. Michael Ostrowski _______________________________ Adviser Name: Dr. Mark Parthun Molecular Cellular Developmental Biology Graduate Program Name: Dr. Amanda Simcox ABSTRACT A cell in its natural environment spends most of its time in a quiescent resting state known as G0 in mammals and stationary phase in yeast. A constant challenge the cell faces is then to appropriately determine when the conditions, including nutrient availability, are favorable for it to grow. Since growth involves massive energy expenditure and a vast remodeling of the cell’s genetic program, a correct determination very likely means the difference between survival and death. Therefore, this crucial decision is both very tightly regulated and extensively coordinated in time and space. This coordination involves a synthesis between internal factors, and environmental clues such as the availability of essential nutrients and favorable conditions. The cell typically accomplishes this complex task through the combined actions of multiple signaling pathways. These pathways link cells to the extracellular environment by providing nutrient-sensing and noxious stress information and determining the appropriate response to any given situation through the activation of specific cellular programs.
    [Show full text]