Genome Wide Analysis Identifies Sphingolipid Metabolism As a New Target of Valproic Acid" (2016)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo -
Gentaur Products List
Chapter 2 : Gentaur Products List • Rabbit Anti LAMR1 Polyclonal Antibody Cy5 Conjugated Conjugated • Rabbit Anti Podoplanin gp36 Polyclonal Antibody Cy5 • Rabbit Anti LAMR1 CT Polyclonal Antibody Cy5 • Rabbit Anti phospho NFKB p65 Ser536 Polyclonal Conjugated Conjugated Antibody Cy5 Conjugated • Rabbit Anti CHRNA7 Polyclonal Antibody Cy5 Conjugated • Rat Anti IAA Monoclonal Antibody Cy5 Conjugated • Rabbit Anti EV71 VP1 CT Polyclonal Antibody Cy5 • Rabbit Anti Connexin 40 Polyclonal Antibody Cy5 • Rabbit Anti IAA Indole 3 Acetic Acid Polyclonal Antibody Conjugated Conjugated Cy5 Conjugated • Rabbit Anti LHR CGR Polyclonal Antibody Cy5 Conjugated • Rabbit Anti Integrin beta 7 Polyclonal Antibody Cy5 • Rabbit Anti Natrexone Polyclonal Antibody Cy5 Conjugated • Rabbit Anti MMP 20 Polyclonal Antibody Cy5 Conjugated Conjugated • Rabbit Anti Melamine Polyclonal Antibody Cy5 Conjugated • Rabbit Anti BCHE NT Polyclonal Antibody Cy5 Conjugated • Rabbit Anti NAP1 NAP1L1 Polyclonal Antibody Cy5 • Rabbit Anti Acetyl p53 K382 Polyclonal Antibody Cy5 • Rabbit Anti BCHE CT Polyclonal Antibody Cy5 Conjugated Conjugated Conjugated • Rabbit Anti HPV16 E6 Polyclonal Antibody Cy5 Conjugated • Rabbit Anti CCP Polyclonal Antibody Cy5 Conjugated • Rabbit Anti JAK2 Polyclonal Antibody Cy5 Conjugated • Rabbit Anti HPV18 E6 Polyclonal Antibody Cy5 Conjugated • Rabbit Anti HDC Polyclonal Antibody Cy5 Conjugated • Rabbit Anti Microsporidia protien Polyclonal Antibody Cy5 • Rabbit Anti HPV16 E7 Polyclonal Antibody Cy5 Conjugated • Rabbit Anti Neurocan Polyclonal -
Structural Studies of Lumazine Synthases – Thermostability, Catalytic Mechanism and Molecular Assembly
Center for Structural Biochemistry Department of Biosciences at Novum Karolinska Institutet, S-141 57 Huddinge, Sweden Structural Studies of Lumazine Synthases – Thermostability, Catalytic Mechanism and Molecular Assembly Xiaofeng Zhang Stockholm 2005 Cover Illustration: Electron density of the active site of lumazine synthase from the hyperthermophilic bacterium Aquifex aeolicus. All previously published papers were reproduced with permission from the publisher. Published and printed by Karolinska University Press Box 200, SE-171 77 Stockholm, Sweden © Xiaofeng Zhang, 2005 ISBN 91-7140-605-0 ABSTRACT Riboflavin, also known as vitamin B2, is biosynthesized in plants, bacteria, archaea and fungi. The primary biological function of riboflavin is related to its existence as a component of the two coenzymes, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which play an important role for electron transfer in energy metabolism. This project is mainly focused on structural studies of lumazine synthase (LS) from the hyperthermophilic bacterium Aquifex aeolicus (LSAQ). The enzyme is involved in the penultimate step of biosynthesis of riboflavin. The aim of this study is to gain insights into the structural basis of thermostability, catalytic mechanism as well as the molecular assembly of the enzyme. Methods used for these studies include X-ray crystallography, electron microscopy (EM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Lumazine synthase from the hyperthermophile A. aeolicus displays dramatic stability against high temperature. The calorimetric melting profile indicates an apparent melting temperature (Tm) of 120qC. The factors that determine the thermostability of A. aeolicus LS were revealed by structural comparisons (Paper I, 2001). In the second last step of riboflavin biosynthesis, lumazine synthase catalyzes the formation of 6-7-dimethyl-8-ribityllumazine, which is subsequently converted to riboflavin. -
Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopa
The Journal of Neuroscience, June 15, 2002, 22(12):5188–5197 Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopamine Agonists and Display Impaired Spatial Learning Tracy M. Reed,1,3 David R. Repaske,2* Gretchen L. Snyder,4 Paul Greengard,4 and Charles V. Vorhees1* Divisions of 1Developmental Biology and 2Endocrinology, Children’s Hospital Research Foundation, Cincinnati, Ohio 45229, 3Department of Biology, College of Mount St. Joseph, Cincinnati, Ohio 45233, and 4Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021 Using homologous recombination, we generated mice lack- maze spatial-learning deficits. These results indicate that en- ing phosphodiesterase-mediated (PDE1B) cyclic nucleotide- hancement of cyclic nucleotide signaling by inactivation of hydrolyzing activity. PDE1B Ϫ/Ϫ mice showed exaggerated PDE1B-mediated cyclic nucleotide hydrolysis plays a signifi- hyperactivity after acute D-methamphetamine administra- cant role in dopaminergic function through the DARPP-32 and tion. Striatal slices from PDE1B Ϫ/Ϫ mice exhibited increased related transduction pathways. levels of phospho-Thr 34 DARPP-32 and phospho-Ser 845 Key words: phosphodiesterases; DARPP-32; dopamine- GluR1 after dopamine D1 receptor agonist or forskolin stimu- stimulated locomotor activity; spatial learning and memory; lation. PDE1B Ϫ/Ϫ and PDE1B ϩ/Ϫ mice demonstrated Morris Morris water maze; methamphetamine; SKF81297; forskolin Calcium/calmodulin-dependent phosphodiesterases (CaM- (CaMKII) and calcineurin and have the potential to activate PDEs) are members of one of 11 families of PDEs (Soderling et CaM-PDEs. Dopamine D1 or D2 receptor activation leads to al., 1999;Yuasa et al., 2001) and comprise the only family that acts adenylyl cyclase activation or inhibition, respectively (Traficante ϩ as a potential point of interaction between the Ca 2 and cyclic et al., 1976; Monsma et al., 1990; Cunningham and Kelley, 1993; nucleotide signaling pathways. -
N-Glycan Trimming in the ER and Calnexin/Calreticulin Cycle
Neurotransmitter receptorsGABA and A postsynapticreceptor activation signal transmission Ligand-gated ion channel transport GABAGABA Areceptor receptor alpha-5 alpha-1/beta-1/gamma-2 subunit GABA A receptor alpha-2/beta-2/gamma-2GABA receptor alpha-4 subunit GABAGABA receptor A receptor beta-3 subunitalpha-6/beta-2/gamma-2 GABA-AGABA receptor; A receptor alpha-1/beta-2/gamma-2GABA receptoralpha-3/beta-2/gamma-2 alpha-3 subunit GABA-A GABAreceptor; receptor benzodiazepine alpha-6 subunit site GABA-AGABA-A receptor; receptor; GABA-A anion site channel (alpha1/beta2 interface) GABA-A receptor;GABA alpha-6/beta-3/gamma-2 receptor beta-2 subunit GABAGABA receptorGABA-A receptor alpha-2receptor; alpha-1 subunit agonist subunit GABA site Serotonin 3a (5-HT3a) receptor GABA receptorGABA-C rho-1 subunitreceptor GlycineSerotonin receptor subunit3 (5-HT3) alpha-1 receptor GABA receptor rho-2 subunit GlycineGlycine receptor receptor subunit subunit alpha-2 alpha-3 Ca2+ activated K+ channels Metabolism of ingested SeMet, Sec, MeSec into H2Se SmallIntermediateSmall conductance conductance conductance calcium-activated calcium-activated calcium-activated potassium potassium potassiumchannel channel protein channel protein 2 protein 1 4 Small conductance calcium-activatedCalcium-activated potassium potassium channel alpha/beta channel 1 protein 3 Calcium-activated potassiumHistamine channel subunit alpha-1 N-methyltransferase Neuraminidase Pyrimidine biosynthesis Nicotinamide N-methyltransferase Adenosylhomocysteinase PolymerasePolymeraseHistidine basic -
Prohibited Materials for Organic Crop Production
United States Department of Agriculture 1400 Independence Avenue SW. NOP 5034-2 Agricultural Marketing Service Room 2646-South Building Effective Date: December 2, 2016 National Organic Program Washington, DC 20250 Page 1 of 2 Guidance Appendix of Prohibited Materials for Organic Crop Production This list is provided for reference purposes and is not intended to be comprehensive. In addition to the materials identified below, any synthetic material that is not included at section 205.601 of the National List is prohibited for crop production. The materials listed below have been specifically prohibited on the National List at section 205.602, have been petitioned and reviewed by National Organic Standards Board and not recommended for addition to the National list, have expired from the National List, and/or have been reviewed by a Federal agency and determined to be prohibited for organic crop production. 1,4-Dimethylnaphthalene Manganous Oxide, except as provided on 3-Decen-2-one § 205.601(j) 6-Benzyladenine Methyl Bromide Acetylated Lanolin Alcohol Methyl Laurate Acrylic Acid Methyl Ester, Polymer with Monocalcium Phosphate Acrylonitrile and 1,3-Butadiene Nickel Salts, Synthetic Ammonium Nonanoate, except as provided Niter on § 205.601 Pelargonic Acid Arsenic Pentaerythritol Monostearate Ash from Manure Burning Pentaerythritol Tetrastearate Avermectin Piperonyl Butoxide Basic Slag, agricultural slag Propylene glycol monolaurate (PGML) Biosolids Polyoxin D Zinc Salt Calcium Carbide Potassium Sulfate (synthetic form) Calcium Oxide, fertilizer -
Phylogenetic Analysis, Subcellular Localization, and Expression
BMC Plant Biology BioMed Central Research article Open Access Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants Malona V Alinsug, Chun-Wei Yu and Keqiang Wu* Address: Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan Email: Malona V Alinsug - [email protected]; Chun-Wei Yu - [email protected]; Keqiang Wu* - [email protected] * Corresponding author Published: 28 March 2009 Received: 26 November 2008 Accepted: 28 March 2009 BMC Plant Biology 2009, 9:37 doi:10.1186/1471-2229-9-37 This article is available from: http://www.biomedcentral.com/1471-2229/9/37 © 2009 Alinsug et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Although histone deacetylases from model organisms have been previously identified, there is no clear basis for the classification of histone deacetylases under the RPD3/ HDA1 superfamily, particularly on plants. Thus, this study aims to reconstruct a phylogenetic tree to determine evolutionary relationships between RPD3/HDA1 histone deacetylases from six different plants representing dicots with Arabidopsis thaliana, Populus trichocarpa, and Pinus taeda, monocots with Oryza sativa and Zea mays, and the lower plants with Physcomitrella patens. Results: Sixty two histone deacetylases of RPD3/HDA1 family from the six plant species were phylogenetically analyzed to determine corresponding orthologues. Three clusters were formed separating Class I, Class II, and Class IV. -
Crystallographic Snapshots of Sulfur Insertion by Lipoyl Synthase
Crystallographic snapshots of sulfur insertion by lipoyl synthase Martin I. McLaughlina,b,1, Nicholas D. Lanzc, Peter J. Goldmana, Kyung-Hoon Leeb, Squire J. Bookerb,c,d, and Catherine L. Drennana,e,f,2 aDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802; cDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; dHoward Hughes Medical Institute, The Pennsylvania State University, University Park, PA 16802; eDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and fHoward Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Vern L. Schramm, Albert Einstein College of Medicine, Bronx, NY, and approved July 5, 2016 (received for review March 8, 2016) Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms substrate and at an intermediate stage in the reaction, just after at the unactivated C6 and C8 positions of a protein-bound octanoyl insertion of the C6 sulfur atom but before sulfur insertion at C8. chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethio- Results nine (AdoMet) radical chemistry; the remainder of the reaction The crystal structure of LipA from M. tuberculosis was de- mechanism, especially the source of the sulfur, has been less clear. termined to 1.64-Å resolution by iron multiwavelength anoma- One controversial proposal involves the removal of sulfur from a lous dispersion phasing (Table S1). The overall fold of LipA consists second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in de- of a (β/α)6 partial barrel common to most AdoMet radical enzymes struction of the cluster during each round of catalysis. -
Nonanoic Acid Product-Type 2 (Disinfectants and Algaecides Not Intended for Direct Application to Humans Or Animals) September 2013 Austria
Regulation (EU) n°528/2012 concerning the making available on the market and use of biocidal products Evaluation of active substances Assessment Report Modification of the conditions of approval Nonanoic acid Product-type 2 (Disinfectants and algaecides not intended for direct application to humans or animals) September 2013 Austria Nonanoic acid Product-type 10 2013 Nonanoic acid (PT 2) Assessment report Finalised in the Standing Committee on Biocidal Products at its meeting on 27 September 2013 CONTENTS 1. STATEMENT OF SUBJECT MATTER AND PURPOSE ....................................... 4 1.1. Principle of evaluation ...................................................................................... 4 1.2. Purpose of the assessment ................................................................................. 4 1.3. Procedure followed ........................................................................................... 5 2. OVERALL SUMMARY AND CONCLUSIONS ...................................................... 7 2.1. Presentation of the Active Substance ................................................................ 7 2.1.1. Identity, Physico-Chemical Properties & Methods of Analysis ........ 7 2.1.2. Intended Uses and Efficacy ................................................................. 8 2.1.3. Classification and Labelling of the active substance Nonanoic acid .. 9 2.1.4. Classification and labelling of the biocidal product NEU 1170 H.... 12 2.2. Summary of the Risk Assessment .................................................................. -
TITLE PAGE Oxidative Stress and Response to Thymidylate Synthase
Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 2, 2021 -Targeted -Targeted 1 , University of of , University SC K.W.B., South Columbia, (U.O., Carolina, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. -
Lipid Rafts Activation of a Neutral Sphingomyelinase in T Cells by + and Proliferation of Human CD4 Cholera Toxin B-Subunit Prev
Cholera Toxin B-Subunit Prevents Activation and Proliferation of Human CD4 + T Cells by Activation of a Neutral Sphingomyelinase in Lipid Rafts This information is current as of October 1, 2021. Alexandre K. Rouquette-Jazdanian, Arnaud Foussat, Laurence Lamy, Claudette Pelassy, Patricia Lagadec, Jean-Philippe Breittmayer and Claude Aussel J Immunol 2005; 175:5637-5648; ; doi: 10.4049/jimmunol.175.9.5637 Downloaded from http://www.jimmunol.org/content/175/9/5637 References This article cites 55 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/175/9/5637.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Cholera Toxin B-Subunit Prevents Activation and Proliferation of Human CD4؉ T Cells by Activation of a Neutral Sphingomyelinase in Lipid Rafts1 Alexandre K.