Solar Chimney from Wikipedia, the Free Encyclopedia
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Thermal Mass
Thermal Mass • What is Thermal Mass? • Types of Thermal Mass • Historical Applications • Thermal Properties of Materials • Analyzing Heat/Cool Storage • Strategies • Other Factors • Computer Analysis • Bibliography Thermal Mass • Thermal mass refers to materials have the capacity to store thermal energy for extended periods. • Thermal mass can be used effectively to absorb daytime heat gains (reducing cooling load) and release the heat during the night (reducing heat load). Types of Thermal Mass • Traditional types of thermal mass include water, rock, earth, brick, concrete, fibrous cement, caliche, and ceramic tile. • Phase change materials store energy while maintaining constant temperatures, using chemical bonds to store & release latent heat. PCM’s include solid-liquid Glauber’s salt, paraffin wax, and the newer solid-solid linear crystalline alkyl hydrocarbons (K-18: 77oF phase transformation temperature). PCM’s can store five to fourteen times more heat per unit volume than traditional materials. (source: US Department of Energy). Historical Applications • The use of thermal mass in shelter dates back to the dawn of humans, and until recently has been the prevailing strategy for building climate control in hot regions. Egyptian mud-brick storage rooms (3200 years old). The lime-pozzolana (concrete) Roman Pantheon Today, passive techniques such as thermal mass are ironically considered “alternative” methods to mechanical heating and cooling, yet the appropriate use of thermal mass offers an efficient integration of structure and thermal services. Thermal Properties of Materials The basic properties that indicate the thermal behavior of materials are: density (p), specific heat (cm), and conductivity (k). The specific heat for most masonry materials is similar (about 0.2-0.25Wh/kgC). -
Criteria and Guidelines for Product and System Developers
D E S I G N I N G S O L A R T H E R M A L S Y S T E M S F O R A R C H I T E C T U R A L I N T E G R A T I O N criteria and guidelines for product and system developers T.41.A.3/1 Task 41 ‐ Solar energy & Architecture ‐ International Energy Agency ‐ Solar Heating and Cooling Programme Report T.41.A.3/1: IEA SHC Task 41 Solar Energy and Architecture DESIGNING SOLAR THERMAL SYSTEMS FOR ARCHITECTURAL INTEGRATION Criteria and guidelines for product and system developers Keywords Solar energy, architectural integration, solar thermal, active solar systems, solar buildings, solar architecture, solar products, innovative products, building integrability. Editors: MariaCristina Munari Probst Christian Roecker November 2013 T.41.A.3/1 IEA SHC Task 41 I Designing solar thermal systems for architectural integration AUTHORS AND CONTRIBUTORS AFFILIATIONS Maria Cristina Munari Probst Christian Roecker (editor, author) (editor, author) EPFL‐LESO EPFL‐LESO Bâtiment LE Bâtiment LE Station 18 Station 18 CH‐1015 Lausanne CH‐1015 Lausanne SWITZERLAND SWITZERLAND [email protected] [email protected] Alessia Giovanardi Marja Lundgren Maria Wall - Operating agent (contributor) (contributor) (contributor) EURAC research, Institute for White Arkitekter Energy and Building Design Renewable Energy P.O. Box 4700 Lund University Universitá degli Studi di Trento Östgötagatan 100 P.O. Box 118 Viale Druso 1 SE‐116 92 Stockholm SE‐221 00 Lund SWEDEN I‐39100 Bolzano, ITALY SWEDEN [email protected] [email protected] [email protected] 1 T.41.A.3/1 IEA SHC Task 41 I Designing solar thermal systems for architectural integration 2 T.41.A.3/1 IEA SHC Task 41 I Designing solar thermal systems for architectural integration ACKNOWLEDGMENTS The authors are grateful to the International Energy Agency for understanding the importance of this subject and accepting to initiate a Task on solar energy and architecture. -
Solar Updraft Power Plant Technology: Basic Concept and Structural Design - Francesca Lupi, Claudio Borri, Wilfried B
SOLAR ENERGY CONVERSION AND PHOTOENERGY SYSTEM - Solar Updraft Power Plant Technology: Basic Concept and Structural Design - Francesca Lupi, Claudio Borri, Wilfried B. Kratzig, Hans-Jurgen Niemann. SOLAR UPDRAFT POWER PLANT TECHNOLOGY: BASIC CONCEPTS AND STRUCTURAL DESIGN Francesca Lupi University of Florence, Florence, Italy Claudio Borri University of Florence, Florence, Italy Wilfried B. Krätzig Ruhr-University of Bochum, Bochum, Germany Hans-Jürgen Niemann Ruhr-University of Bochum, Bochum, Germany Keywords: Renewable energy, solar energy, solar radiation, deserts, wind energy, electric power, solar updraft tower, solar chimney, ultra-high tower, collector, greenhouse, glass, steel, reinforced concrete, wind loading, wind at high altitudes, boundary layer meteorology, atmospheric boundary layer, Ekman spiral, tip effect, slender circular cylinder, wind turbulence, mean and fluctuating wind load, vortex excitation, efflux, shell, stiffening rings, shell-like behavior, beam-like behavior, vibration modes, buckling, non-linear response, structural optimization. Contents 1. Solar Updraft Power Technology: Introduction and Working Principles 2. History of the Solar Updraft Power Technology 2.1. Solar Tower Prototype in Manzanares (Spain) 3. Evaluation of Plant Efficiency 3.1. The Collector 3.2. The Chimney 3.3. The Turbines 3.4. Electric Power Generated by Supps 4. The Collector 5. Actions on Solar Updraft Towers 6. Wind Loading on Solar Updraft Towers 6.1. Wind Flow Structure in the Atmospheric Boundary Layer at High Altitudes 6.1.1. Boundary Layer Meteorology 6.1.2. The Ekman Spiral 6.1.3. Theoretical Considerations on the Mean Wind and Turbulence in the Ekman Layer 6.2. Modeling of the Wind Load on Solar Towers 6.2.1. Mean Wind Load 6.2.2. -
The Wind-Catcher, a Traditional Solution for a Modern Problem Narguess
THE WIND-CATCHER, A TRADITIONAL SOLUTION FOR A MODERN PROBLEM NARGUESS KHATAMI A submission presented in partial fulfilment of the requirements of the University of Glamorgan/ Prifysgol Morgannwg for the degree of Master of Philosophy August 2009 I R11 1 Certificate of Research This is to certify that, except where specific reference is made, the work described in this thesis is the result of the candidate’s research. Neither this thesis, nor any part of it, has been presented, or is currently submitted, in candidature for any degree at any other University. Signed ……………………………………… Candidate 11/10/2009 Date …………………………………....... Signed ……………………………………… Director of Studies 11/10/2009 Date ……………………………………… II Abstract This study investigated the ability of wind-catcher as an environmentally friendly component to provide natural ventilation for indoor environments and intended to improve the overall efficiency of the existing designs of modern wind-catchers. In fact this thesis attempts to answer this question as to if it is possible to apply traditional design of wind-catchers to enhance the design of modern wind-catchers. Wind-catchers are vertical towers which are installed above buildings to catch and introduce fresh and cool air into the indoor environment and exhaust inside polluted and hot air to the outside. In order to improve overall efficacy of contemporary wind-catchers the study focuses on the effects of applying vertical louvres, which have been used in traditional systems, and horizontal louvres, which are applied in contemporary wind-catchers. The aims are therefore to compare the performance of these two types of louvres in the system. For this reason, a Computational Fluid Dynamic (CFD) model was chosen to simulate and study the air movement in and around a wind-catcher when using vertical and horizontal louvres. -
Ecology Design
ECOLOGY and DESIGN Ecological Literacy in Architecture Education 2006 Report and Proposal The AIA Committee on the Environment Cover photos (clockwise) Cornell University's entry in the 2005 Solar Decathlon included an edible garden. This team earned second place overall in the competition. Photo by Stefano Paltera/Solar Decathlon Students collaborating in John Quale's ecoMOD course (University of Virginia), which received special recognition in this report (see page 61). Photo by ecoMOD Students in Jim Wasley's Green Design Studio and Professional Practice Seminar (University of Wisconsin-Milwaukee) prepare to present to their client; this course was one of the three Ecological Literacy in Architecture Education grant recipients (see page 50). Photo by Jim Wasley ECOLOGY and DESIGN Ecological by Kira Gould, Assoc. AIA Literacy in Lance Hosey, AIA, LEED AP Architecture with contributions by Kathleen Bakewell, LEED AP Education Kate Bojsza, Assoc. AIA 2006 Report Peter Hind , Assoc. AIA Greg Mella, AIA, LEED AP and Proposal Matthew Wolf for the Tides Foundation Kendeda Sustainability Fund The contents of this report represent the views and opinions of the authors and do not necessarily represent the opinions of the American Institute of Architects (AIA). The AIA supports the research efforts of the AIA’s Committee on the Environment (COTE) and understands that the contents of this report may reflect the views of the leadership of AIA COTE, but the views are not necessarily those of the staff and/or managers of the Institute. The AIA Committee -
Solar Energy Perspectives
Solar Energy TECHNOLOGIES Perspectives Please note that this PDF is subject to specific restrictions that limit its use and distribution. The terms and conditions are available online at www.iea.org/about/copyright.asp Renewable Energy Renewable Solar Energy Renewable Energy Perspectives In 90 minutes, enough sunlight strikes the earth to provide the entire planet's energy needs for one year. While solar energy is abundant, it represents a tiny Technologies fraction of the world’s current energy mix. But this is changing rapidly and is being driven by global action to improve energy access and supply security, and to mitigate climate change. Technologies Solar Around the world, countries and companies are investing in solar generation capacity on an unprecedented scale, and, as a consequence, costs continue to fall and technologies improve. This publication gives an authoritative view of these technologies and market trends, in both advanced and developing Energy economies, while providing examples of the best and most advanced practices. It also provides a unique guide for policy makers, industry representatives and concerned stakeholders on how best to use, combine and successfully promote the major categories of solar energy: solar heating and cooling, photovoltaic Technologies Solar Energy Perspectives Solar Energy Perspectives and solar thermal electricity, as well as solar fuels. Finally, in analysing the likely evolution of electricity and energy-consuming sectors – buildings, industry and transport – it explores the leading role solar energy could play in the long-term future of our energy system. Renewable Energy (61 2011 25 1P1) 978-92-64-12457-8 €100 -:HSTCQE=VWYZ\]: Renewable Energy Renewable Renewable Energy Technologies Energy Perspectives Solar Renewable Energy Renewable 2011 OECD/IEA, © INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA), an autonomous agency, was established in November 1974. -
Application to Solar Updraft Tower
sustainability Article Emergy and Sustainability Ternary Diagrams of Energy Systems: Application to Solar Updraft Tower Islam Elsayed * and Yoshiki Nishi * Department of Systems Design for Ocean-Space, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan * Correspondence: [email protected] (I.E.); [email protected] (Y.N.) Received: 26 November 2020; Accepted: 14 December 2020; Published: 16 December 2020 Abstract: To facilitate sustainable energy development, one has to understand the limited availability of nonrenewable energy resources, and the ability of the earth to renew or recover. Emergy is an instrument that measures environmental loading, ecological economics, and regional sustainable development. In this study, emergy indicators are calculated to investigate the sustainability of solar updraft tower (SUT). SUT produces energy from the hot air, utilizing a combination of a solar collector, central tower, and air turbines. The results demonstrate that the sustainability of SUT grew as the size of the plant increased. Further, emergetic ternary diagrams are drawn to facilitate the comparison between SUT and various technologies. The resources-use efficiency of wind energy and SUT, 200 MW is found to be the lowest among all energy technologies presented in this research. Scenario analysis is performed to explore the future optimization directions. The results demonstrate that the development direction of SUT systems should mainly focus on reducing the materials demanded by the manufacturing and construction of its solar collectors. This study aims to demonstrate the value of emergy as a powerful instrument for drawing long-term sustainable strategies in energy markets for a greener tomorrow. -
A Passive Solar Retrofit in a Gloomy Climate
Rochester Institute of Technology RIT Scholar Works Theses 5-11-2018 A Passive Solar Retrofit in a Gloomy Climate James Russell Fugate [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Fugate, James Russell, "A Passive Solar Retrofit in a Gloomy Climate" (2018). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. A Passive Solar Retrofit in a Gloomy Climate By James Russell Fugate A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARCHITECTURE Department of Architecture Golisano Institute for Sustainability Rochester Institute of Technology May 11, 2018 Rochester, New York Committee Approval A Passive Solar Retrofit in a Gloomy Climate A Master of Architecture Thesis Presented by: James Russell Fugate Jules Chiavaroli, AIA Date Professor Department of Architecture Thesis Chair Dennis A. Andrejko, FAIA Date Associate Professor Head, Department of Architecture Thesis Advisor Nana-Yaw Andoh Date Assistant Professor Department of Architecture Thesis Advisor ii Acknowledgments I would like to thank the faculty and staff of the Master of Architecture program at the Rochester Institute of Technology. Being part of the original cohort of students in the program’s initial year was an honor and it has been exciting to see the program grow into the accredited and internationally respected program of today. I want to thank Dennis Andrejko for taking the chance and accepting me into the program as an older, part-time student. -
Akademia Baru a Brief Review on Solar Updraft Power Plant
Penerbit Akademia Baru Journal of Advanced Review on Scientific Research ISSN (online): 2289-7887 | Vol. 18, No.1. Pages 1-25, 2016 A Brief Review on Solar Updraft Power Plant Jeffrey H. Y. Too * and C. S. Nor Azwadi Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor, Malaysia. *[email protected] Abstract – This literature review paper presents the history and background of the solar updraft tower which explains the working principle of the system and also describe the major components of the solar updraft tower. The system utilized solar thermal technology by heating up the air below the solar collector through solar radiation, convection and greenhouse effect. The heated up air tends to travel to the bottom of the tower and rise up the chimney due to differential temperature. The upward velocity is used to turn a turbine installed at the bottom end of the tower either vertical or horizontal to generate power. This paper also explains the experimental and numerical studies conducted throughout the years and the improvement to the solar updraft tower power generation system. The challenges and limitation of the system is also being discussed and the improvement conducted to bridge the gap to further improvement of the system. Copyright © 2016 Penerbit Akademia Baru - All rights reserved. Keywords : Solar Updraft Tower, Solar Chimney Power Plant, Solar Power, Renewable Energy, Power Generation 1.0 INTRODUCTION During the pass few couple of decades, the solar power technology is categorized as a viable source of clean energy. There has been considerable advancement to the solar photovoltaic (PV) power generation system development throughout the years. -
Guidelines on Building Integration of Photovoltaic in the Mediterranean Area
Guidelines on building integration of photovoltaic in the Mediterranean area This publication has been produced with the financial assistance of the European Union under the ENPI CBC Mediterranean Sea Basin Programme FOSTErinMED Project Leader Chapter 6 University of Cagliari Good practices Department of Civil and Environmental Engineering and Architecture Maddalena Achenza and Giuseppe Desogus Prof. Antonello Sanna (University of Cagliari - Italy) Editors Graphic Design Maddalena Achenza (University of Cagliari - Italy) Giancarlo Murgia Giuseppe Desogus (University of Cagliari - Italy) This collective works gathers and integrates contributions from all the Technical and Scientific Committee staff. Disclaimer Chapter 1 This document has been produced with the financial assistance of the Eu- Introduction ropean Union under the ENPI CBC Mediterranean Sea Basin Programme. Maddalena Achenza and Giuseppe Desogus The contents of this document are under the responsibility of University of (University of Cagliari - Italy) Cagliari (UNICA) and FOSTEr in MED project partners and can under no circu- Chapter 2 mstances be regarded as reflecting the position of the European Union or of the Programme’s management structures. PV Module Type The total budget of FOSTEr in MED project is 4,5 million Euro and it is financed Maddalena Achenza (University of Cagliari - Italy) for an amount of 4,05 million Euro by European union through the ENPI CBC with contributions from Mediterranean Sea Basin Programme (www.enpicbcmed.eu). Mattia Beltramini (Special Agency Centre Of Services For Enterprises - CSPI - Italy) Statement about the Programme Chapter 3 The 2007-2013 ENPI CBC Mediterranean Sea Basin Programme is a multi-la- PV Integration teral Cross-Border Cooperation initiative funded by the European Neigh- Maddalena Achenza (University of Cagliari - Italy) borhood and Partnership Instrument (ENPI). -
Entornos Termodinámicos. Una Cartografía Crítica En Torno a La
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉNICA SUPERIOR DE ARQUITECTURA ENTORNOS TERMODINÁMICOS. UNA CARTOGRAFÍA CRÍTICA EN TORNO A LA ENERGÍA Y LA ARQUITECTURA JAVIER GARCÍA-GERMÁN TRUJEDA, ARQUITECTO 2014 DEPARTAMENTO DE PROYECTOS ARQUITECTÓNICOS ESCUELA TÉNICA SUPERIOR DE ARQUITECTURA ENTORNOS TERMODINÁMICOS. UNA CARTOGRAFÍA CRÍTICA EN TORNO A LA ENERGÍA Y LA ARQUITECTURA JAVIER GARCÍA-GERMÁN TRUJEDA, ARQUITECTO DIRECTOR: JOSÉ IGNACIO ÁBALOS VÁZQUEZ 2014 Tribunal nombrado por el Mgfco. Y Excmo. Sr. Rector de la Universidad Politécnica de Madrid, el día Presidente D. Vocal D. Vocal D. Vocal D. Secretario D. Realizado el acto de defensa y lectura de Tesis el día 28 de noviembre de 2014 en la Escuela Técnica Superior de Arquitectura de Madrid, Calificación: EL PRESIDENTE LOS VOCALES EL SECRETARIO THERMODYNAMIC ENVIRONMENTS INDEX INDEX INDEX RESUMEN ABSTRACT 1. INTRODUCTION 1.1.-THE ARCHITECTURAL ARENA 1.2.-THERMODYNAMIC SHIFT 1.3.-HISTORICAL CARTOGRAPHY 1.4.-THERMODYNAMIC ENVIRONMENTS AND THERMODYNAMIC PATTERNS 2.-TERRITORIAL ATMOSPHERES 2.1.-INTRODUCTION 2.2.-AIR-CONDITIONING AND MACROCLIMATE I THERMODYNAMIC ENVIRONMENTS INDEX Meteorology: a qualitative and quantitative approach Modernity’s stance on climate: a macroclimatic understanding ASH&VE institutional approach on climate 2.3.-SEALED ENVELOPES Thermodynamic interconnectedness Climatic guarantees: Carrier and atmospheric full control From airtight to thermal-tight envelopes Reductionist approach: isolated laboratories From refrigerators to buildings 2.4.-THE SHIFT 2.5.-MEDIATING ENVELOPES. OLGYAY’S CLIMATIC ENGAGEMENT Pattern-recognition and quantification. Towards a rational approach. Multidisciplinary approach: towards bioclimatism. Overlaying general and locallimatic weather patterns: Geiger and microclimatism Olgyay and climate: quantitative statistic data versus qualitative microclimatism From insulation to engagement 2.6.-FORM AND CLIMATE. -
Sunwall Design Competition Shows the Tremendous Interest Within the United States for Solar Energy Utilization
UNITED STATES DEPARTMENT OF ENERGY NATIONAL RENEWABLE ENERGY LABORATORY THE AMERICAN INSTITUTE OF ARCHITECTS sunwalldesigncompetition DOE/GO-102001-1339 ARCHITECTURAL ENGINEERING INSTITUTE July 2001 SOLAR DESIGN COMPETITION • NATIONAL OF ENERGY DEPARTMENT UNITED STATES UNITED STATES DEPARTMENT OF ENERGY • NATIONAL SOLAR DESIGN COMPETITION SUNWALL AWARD CEREMONY So we created a national competition to get the best architectural firms and architectural students in WASHINGTON, D.C. – OCTOBER 13, 2000 the country to develop a conceptual design. The competition had two goals: First, the architectural U.S. ENERGY SECRETARY, BILL RICHARDSON community could learn the benefits of integrating solar technology into buildings. And, second, we hoped to get a stunning design to help us seek approval for the Forrestal project. Both objectives “For anyone who’s counting, the sun will appear to move across our sky 7,305 times in the next 20 have been obtained. years. During that period, worldwide energy consumption will increase by nearly 80 percent. It’s a staggering amount so we need to turn increasingly to clean alternative sources of energy – like the Solar energy systems integrated into or onto buildings is the fastest-growing segment of the solar sun – to fuel our needs. energy market. The overwhelming response that we got to the Sunwall Design Competition shows the tremendous interest within the United States for solar energy utilization. Today, we take a step that I hope shows just how serious we are about redoubling our efforts to capture some of the sun’s vast energy and making it work for us in ways that have been underutilized There were 501 individuals or teams that registered.