Generation of Biologically Contained Ebola Viruses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydroxychloroquine Prophylaxis and Treatment Is Ineffective in Macaque and Hamster SARS-Cov-2 Disease Models
Hydroxychloroquine prophylaxis and treatment is ineffective in macaque and hamster SARS-CoV-2 disease models Kyle Rosenke, … , Emmie de Wit, Heinz Feldmann JCI Insight. 2020. https://doi.org/10.1172/jci.insight.143174. Research In-Press Preview COVID-19 Therapeutics Graphical abstract Find the latest version: https://jci.me/143174/pdf 1 Title: Hydroxychloroquine Prophylaxis and Treatment is Ineffective in Macaque and Hamster 2 SARS-CoV-2 Disease Models 3 4 Authors: Kyle Rosenke,1† Michael. A. Jarvis,2† Friederike Feldmann,3† BenJamin. Schwarz,4 5 Atsushi Okumura,1 JamieLovaglio,3 Greg Saturday,3 Patrick W. Hanley,3 Kimberly Meade- 6 White,1 Brandi N. Williamson,1 Frederick Hansen,1 Lizette Perez-Perez,1 Shanna Leventhal,1 7 Tsing-Lee Tang-Huau,1 Julie Callison,1 Elaine Haddock.1 Kaitlin A. Stromberg,4 Dana Scott,3 8 Graham Sewell,5 Catharine M. Bosio,4 David Hawman,1 Emmie de Wit,1 Heinz Feldmann1* 9 †These authors contributed equally 10 11 Affiliations: 1Laboratory of Virology, 3Rocky Mountain Veterinary Branch and 4Laboratory of 12 Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious 13 Diseases, National Institutes of Health, Hamilton, MT, USA; 14 2University of Plymouth; and The Vaccine Group Ltd, Plymouth, Devon, UK; 15 5The Leicester School of Pharmacy, De Montfort University, Leicester, UK 16 17 *Corresponding author: Heinz Feldmann, Rocky Mountain Laboratories, 903 S 4th Street, 18 Hamilton, MT, US-59840; Tel: (406)-375-7410; Email: [email protected] 19 20 Conflict of Interest Statement: The authors have declared that no conflict of interest exists. 21 22 ABSTRACT 23 We remain largely without effective prophylactic/therapeutic interventions for COVID-19. -
CV Heinz Feldmann
Curriculum Vitae M.D., Ph.D. Heinz Feldmann Name: Heinz Feldmann Forschungsschwerpunkte: hochinfektiöse Viren, Ebola-Virus, Marburg-Virus, Krankheitsmodellierung mit nichtmenschlichen Primatenmodellen, Entwicklung von Impfstoffen, Ebola-Impfstoff (rVSV-ZEBOV), Virostatika und Therapeutika Heinz Feldmann ist Virologe. Er erforscht hochinfektiöse Viren wie das Lassa-, Ebola- oder Marburg- Virus. Sein Forschungsinteresse gilt der Entwicklung von Impfstoffen. Er hat einen Impfstoff für Ebola entwickelt und gilt als international führender Ebola-Experte. Bei Ausbrüchen von Ebola, Lassa-Fieber und SARS war er vielfach Berater der WHO vor Ort. Akademischer und beruflicher Werdegang seit 2017 Graduate Faculty Associate an der Marshall University, Huntington, West Virginia, USA 2012 - 2017 Affiliate Appointment an der Washington University, Seattle, Washington, USA 2011 - 2015 Graduate Faculty an der Purdue University, West Lafayette, Indiana, USA 2010 - 2018 Faculty Affiliate an der University of Montana, Missoula, Montana, USA seit 2008 Leiter des Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, USA und Leitender Wissenschaftler der RML BSL4 Laboratories 2002 - 2012 Adjunct Professor am Department of Pathology an der University of Texas Medical Branch, Galveston, Texas, USA seit 1999 Assistant und Associate Professor am Department of Medical Microbiology, Medical Faculty an der University of Manitoba, Winnipeg, Manitoba, -
Tracing the Origins of SARS-COV-2 in Coronavirus Phylogenies
Tracing the origins of SARS-COV-2 in coronavirus phylogenies 1 2 3,4 5* 6,7** Erwan Sallard , José Halloy , Didier Casane , Etienne Decroly a nd Jacques van Helden 1) École Normale Supérieure de Paris, 45 rue d’Ulm, 75005 Paris, France. ORCID: 0000-0002-2324-3633. 2) Université de Paris, CNRS, LIED UMR 8236, 85 bd Saint-Germain, 75006 Paris, France. ORCID: 0000-0003-1555-2484 3) Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. ORCID: 0000-0001-5463-1092 4) Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. 5) Aix-Marseille Univ, CNRS, UMR 7257, AFMB, Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France. ORCID: 0000-0002-6046-024X 6) CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France. ORCID: 0000-0002-8799-8584 7) Aix-Marseille Univ, INSERM, lab. Theory and Approaches of Genome Complexity (TAGC), Marseille, France. * [email protected], **[email protected] The last two authors have equally contributed Abstract SARS-CoV-2 is a new human coronavirus (CoV), which emerged in China in late 2019 and is responsible for the global COVID-19 pandemic that caused more than 59 million infections and 1.4 million deaths in 11 months. Understanding the origin of this virus is an important issue and it is necessary to determine the mechanisms of its dissemination in order to contain future epidemics. Based on phylogenetic inferences, sequence analysis and structure-function relationships of coronavirus proteins, informed by the knowledge currently available on the virus, we discuss the different scenarios evoked to account for the origin - natural or synthetic - of the virus. -
BMBL) Quickly Became the Cornerstone of Biosafety Practice and Policy in the United States Upon First Publication in 1984
Biosafety in Microbiological and Biomedical Laboratories 5th Edition U.S. Department of Health and Human Services Public Health Service Centers for Disease Control and Prevention National Institutes of Health HHS Publication No. (CDC) 21-1112 Revised December 2009 Foreword Biosafety in Microbiological and Biomedical Laboratories (BMBL) quickly became the cornerstone of biosafety practice and policy in the United States upon first publication in 1984. Historically, the information in this publication has been advisory is nature even though legislation and regulation, in some circumstances, have overtaken it and made compliance with the guidance provided mandatory. We wish to emphasize that the 5th edition of the BMBL remains an advisory document recommending best practices for the safe conduct of work in biomedical and clinical laboratories from a biosafety perspective, and is not intended as a regulatory document though we recognize that it will be used that way by some. This edition of the BMBL includes additional sections, expanded sections on the principles and practices of biosafety and risk assessment; and revised agent summary statements and appendices. We worked to harmonize the recommendations included in this edition with guidance issued and regulations promulgated by other federal agencies. Wherever possible, we clarified both the language and intent of the information provided. The events of September 11, 2001, and the anthrax attacks in October of that year re-shaped and changed, forever, the way we manage and conduct work -
An Emergent Ebola Virus Nucleoprotein Variant Influences Virion
bioRxiv preprint doi: https://doi.org/10.1101/454314; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 An emergent Ebola virus nucleoprotein variant influences virion 2 budding, oligomerization, transcription and replication 3 Aaron E Lin1,2,3,11, William E Diehl4,11, Yingyun Cai5, Courtney Finch5, Chidiebere Akusobi6, 4 Robert N Kirchdoerfer7, Laura Bollinger5, Stephen F Schaffner2,3, Elizabeth A Brown2,3, Erica 5 Ollmann Saphire7,8, Kristian G Andersen7,9, Jens H Kuhn5,12, Jeremy Luban4,12, Pardis C 6 Sabeti1,2,3,10,12 7 8 1Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA. 2FAS Center 9 for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, 10 Cambridge, MA 02138, USA. 3Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. 11 4Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 12 01605, USA. 5Integrated Research Facility at Fort Detrick, National Institute of Allergy and 13 Infectious Diseases, National Institutes of Health, Frederick, MD 21702. 6Department of 14 Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 15 02120, USA. 7Department of Immunology and Microbial Sciences, The Scripps Research 16 Institute, La Jolla, CA 92037, USA. 8The Skaggs Institute for Chemical Biology, The Scripps 17 Research Institute, La Jolla, CA 92037, USA. 9Scripps Translational Science Institute, La Jolla, 18 CA 92037, USA. -
Development and Characterization of Lassa
DEVELOPMENT AND CHARACTERIZATION OF LASSA VIRUS VACCINES AND MOUSE MODEL BY GAËLLE CAMUS A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Doctor of Philosophy Department of Immunology University of Manitoba Winnipeg Copyright © 2012 by Gaëlle Camus ACKNOWLEDGEMENTS I am extremely thankful to my advisory committee, Dr. Heinz Feldmann, Dr. Redwan Moqbel, my external examiner Dr. Lisa Hensley and especially my supervisor, Dr. Jude Uzonna and my co-supervisor, Dr. Judie Alimonti for their support, guidance and encouragement throughout the years of my PhD. I would like to thank Dr. Steven Jones for giving me the opportunity to work on Lassa fever, support throughout the years and believing in me. I want to acknowledge Dr. Ute Ströher for sharing her enthusiasm for Lassa virus with me and helpful discussions. I would also like to thank Dr. Paul Hazelton for the electron microscopy studies. I am grateful to the Department of Immunology and all its members at the University of Manitoba for their help and support over the years. Thanks to everyone in Special Pathogens, especially Kinola Williams, Alex Silaghi, Heidi Breitling, Lisa Fernando, Xiangguo Qiu and Salipa Sinkala. I appreciate your support, help and friendship. I am also grateful to the Manitoba Health Research Council for the “Graduate Student Fellowship” I received in 2006-2010. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS .................................................................................................................. -
H1NWHAT? Making Sense of the Virology of the Flu Matthew S
DefiningMomentsCanada.ca H1NWHAT? Making Sense of the Virology of the Flu Matthew S. Miller ust as the First World War was winding down in 1918, nature was set to release a scourge upon humanity Jcomparable in scale to the bubonic plague epidemics of the Middle Ages. Approximately 18 million people died and another 23 million were injured during the four years of the war (Mougel 2011).1 Yet over just two years, between 1918 and 1920, the “Spanish Flu” pandemic swept the entire planet, infecting about half a billion individuals, 50 to 100 million of whom would not survive (Johnson and Mueller 2002).2 In total, the pandemic caused the deaths of three to five percent of the global population at the time. Were a similar pandemic to occur today, the death toll would amount to the combined population of Canada and the USA – over 360 million people. Such extreme mortality rates are obviously a source of concern for health practitioners. Despite incredible advances in medicine since 1918, our ability to prevent or respond to flu pandemics remains almost unchanged. Why does the flu continue to vex us while other devastating viruses of the past (e.g., smallpox, polio) have all but disappeared? To grasp the magnitude of this problem, one must understand the unique biology of the flu virus itself. The “Spanish Flu” was caused by an influenza A virus (IAV), which comes in many forms. The type that caused the Spanish Flu was the “H1N1” virus, with the letters referring to two families of proteins -- hemagglutinin (H) and neuraminidase (N) -- found on the surface of the virus (Palese and Shaw 2007).3 These proteins coat the virus with spikes, helping it to enter and exit the cells in which it replicates. -
Development of Replication-Competent Vsv-Based Vaccines for Protection Against Hantaviruses
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2016 DEVELOPMENT OF REPLICATION-COMPETENT VSV-BASED VACCINES FOR PROTECTION AGAINST HANTAVIRUSES Joshua Ovila Marceau Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Marceau, Joshua Ovila, "DEVELOPMENT OF REPLICATION-COMPETENT VSV-BASED VACCINES FOR PROTECTION AGAINST HANTAVIRUSES" (2016). Graduate Student Theses, Dissertations, & Professional Papers. 10899. https://scholarworks.umt.edu/etd/10899 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. DEVELOPMENT OF REPLICATION-COMPETENT VSV-BASED VACCINES FOR PROTECTION AGAINST HANTAVIRUSES By JOSHUA OVILA MARCEAU Bachelor of Science in Microbiology, Pennsylvania State University, State College, Pennsylvania, 2009 Previous Degree, College or University, City, State or Country, Year Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences The University of Montana Missoula, MT December 2016 Approved by: Scott Whittenburg, Dean of The Graduate School Graduate School Dr. Heinz Feldmann, Co-Chair Primary Research Advisor NIH NIAID Rocky Mountain Laboratories Hamilton, Montana USA 59840 Dr. Keith Parker, Professor (Co-Chair) Department of Biomedical Sciences Dr. Ruben M. Ceballos, Assistant Professor Department of Biological Sciences University of Arkansas Fayetteville, Arkansas, USA 72730 Dr. Brent Ryckman, Associate Professor, Division of Biological Sciences Dr. -
Research.Pdf (5.117Mb)
CELL-TO-CELL INFECTION, CELL-CELL FUSION AND PRODUCTION OF EBOLAVIRUS: MECHANISMS OF ACTION AND CELLULAR MODULATORS _____________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by Chunhui Miao Dr. Shan-Lu Liu, Dissertation Supervisor JULY 2016 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled CELL-TO-CELL INFECTION, CELL-CELL FUSION AND PRODUCTION OF EBOLAVIRUS: MECHANISMS OF ACTION AND CELLULAR MODULATORS presented by Chunhui Miao, a candidate for the degree of Doctor of Philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Shan-Lu Liu Dr. Bumsuk Hahm Dr. Marc Johnson Dr. David Pintel Dr. Guoquan Zhang DEDICATION “I am a slow walker, but I never walk backwards.” - Abraham Lincoln . “Clear Head, Clever Hand and Clean Habit, C3H3”- The Motto of the Liu Lab ACKNOWLEDGMENTS First, I thank my mentor, Dr. Shan-Lu Liu for his continuous and selfless support. I feel lucky to be his student and have had a chance to learn from him during the Ph.D. training. He is the best knowledgeable and also hardest worker I have never met. I would like to express my gratitude to him for helping me throughout the Ph.D. process. He had spent tons of time teaching me how to read, how to write and how to communicate personally and scientifically. I have learned a great deal from him, not only being a scientist but also a useful person. -
Thesis Reference
Thesis L'épidémie de la maladie du virus Ebola et le vaccin VSV-EBOV : un essai clinique de phase I dans une situation d'urgence CSAKI HUTTNER, Angela Abstract L'épidémie actuelle de maladie du virus Ebola a été reconnue en Guinée en Mars 2014. La maladie a touché plus que 10 pays sur trois continents, et aux Etats Unis et en Espagne, des transmissions nosocomiales ont eu lieu. La portée de l'épidémie a déclenchée un certain degré de panique et, enfin, une collaboration internationale sans précédent. En automne 2014, sous la coordination de l'Organisation mondiale de la santé, les Hôpitaux universitaires de Genève ont lancé un essai de phase I pour tester la sécurité et immunogénicité du candidat vaccin le plus prometteur. Cette étude randomisée, contrôlée par placebo a inclus 115 volontaires sains. Le vaccin a été réactogène mais fortement immunogène ; résultats inattendus comprenaient des arthrites, dermatites, et vasculites cutanées liées au vaccin. Ces effets secondaires ont été enfin auto-limités, et le vaccin a été sélectionné pour des essais ultérieurs (phase III) sur le terrain. Reference CSAKI HUTTNER, Angela. L'épidémie de la maladie du virus Ebola et le vaccin VSV-EBOV : un essai clinique de phase I dans une situation d'urgence. Thèse de doctorat : Univ. Genève, 2016, no. Méd. 10827 DOI : 10.13097/archive-ouverte/unige:94945 URN : urn:nbn:ch:unige-949452 Available at: http://archive-ouverte.unige.ch/unige:94945 Disclaimer: layout of this document may differ from the published version. 1 / 1 Section de médecine Clinique Département -
Download H5N1 Timeline
1 H5N1 Timeline of Select Episodes and their Significance Gaymon Bennett, Center for Biological Futures, Basic Sciences, Hutchinson Center In September 2011 researchers from the Erasmus Medical Center in Rotterdam, The Netherlands led by Ron Fouchier announced that they had successfully engineered a mutant form of influenza H5N1, “avian influenza,” that is transmissible by respiratory route between mammals (ferrets). Given that ferrets’ immune response to influenza is considered to be similar to the response in humans, the studies suggest that the engineered H5N1 is likely transmissible human-to-human as well. The researchers suggested that the transmissible flu they had created remained as lethal as the original strain on which their work had been carried out, a strain estimated to be fatal in ~30-60% of cases in humans. Several months later it became widely known that a second research group, led by University of Tokyo and University of Wisconsin professor Yoshihiro Kawaoka, similarly had engineered a mammal-to-mammal transmissible form of H5N1. The conduct of the work, the handling of its announcement, and the political turmoil set into motion by the prospect of its publication have raised serious questions about the limits of free inquiry and the regulation of research with dangerous organisms. It has also raised serious questions about the terms under which such research should be organized, justified, and critiqued. In the table that follows I provide a timeline of the key episodes in the unfolding of this event, with an explanation of how each episode is significant. I pay particular attention to how the story being told about the research and importance had changed, and how its political framing has led to a game of justification and counter justification in which the account of the science and how it should be interpreted has become formed by the polemics which have taken hold. -
FY16 NEIDL Annual Report
Annual Report Fiscal Year 2016 Table of Contents Letter from the Director …………………………………………………………….………………………………………………...................... 1 3 Mission and Strategic Plan …………………………………………………………….………………………………….………………………..…… Faculty and Staff………………………………………………………………….…………………………………………………………................... 4 Scientific Leadership ……………………………………………….……………………………………………………………................ 4 Principal Investigators………………………………………………………………..…………………………………………................ 4 Researchers and Laboratory Staff………………………………………..………………………………………………................. 6 Students……………………………………………………………………………………………………………………………….................. 7 Animal Research Support………………………………………………………………………………………………………................ 8 Operations Leadership…………………………………………………………………………………………………………................ 8 Administration ……………………………………………………………………………………………………………………................ 8 Community Relations……………………………………………………………………….…………………………………................. 9 Facilities Maintenance and Operations……………………………………………………….………………………................. 9 Environmental Health & Safety ………………………………………………………………………………………….................. 9 Public Safety………………………………………………………………………………………………………….…………….................. 9 Research…………………………………………………………………………………………………………………….………………………................ 11 Publications …………………………………………………………………………………….……………………………................……. 11 Y16 Funded Research………………………………………………………………………..……………..……………………………….................. 15 Seed Funding………………………………………………………………………………………………………….……………................ 18 NEIDL Faculty Recognition