An Emergent Ebola Virus Nucleoprotein Variant Influences Virion

Total Page:16

File Type:pdf, Size:1020Kb

An Emergent Ebola Virus Nucleoprotein Variant Influences Virion bioRxiv preprint doi: https://doi.org/10.1101/454314; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 An emergent Ebola virus nucleoprotein variant influences virion 2 budding, oligomerization, transcription and replication 3 Aaron E Lin1,2,3,11, William E Diehl4,11, Yingyun Cai5, Courtney Finch5, Chidiebere Akusobi6, 4 Robert N Kirchdoerfer7, Laura Bollinger5, Stephen F Schaffner2,3, Elizabeth A Brown2,3, Erica 5 Ollmann Saphire7,8, Kristian G Andersen7,9, Jens H Kuhn5,12, Jeremy Luban4,12, Pardis C 6 Sabeti1,2,3,10,12 7 8 1Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA. 2FAS Center 9 for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, 10 Cambridge, MA 02138, USA. 3Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. 11 4Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 12 01605, USA. 5Integrated Research Facility at Fort Detrick, National Institute of Allergy and 13 Infectious Diseases, National Institutes of Health, Frederick, MD 21702. 6Department of 14 Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 15 02120, USA. 7Department of Immunology and Microbial Sciences, The Scripps Research 16 Institute, La Jolla, CA 92037, USA. 8The Skaggs Institute for Chemical Biology, The Scripps 17 Research Institute, La Jolla, CA 92037, USA. 9Scripps Translational Science Institute, La Jolla, 18 CA 92037, USA. 10Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. 11Co-first 19 author. 12Co-last author. 1 bioRxiv preprint doi: https://doi.org/10.1101/454314; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 3 To investigate how Ebola virus phenotypes changed during the 2013‒2016 Western African 4 Ebola virus disease epidemic, we examined a key viral mutation that rose to high frequency: an 5 R111C substitution in the viral nucleoprotein (NP). Though NP plays many essential roles 6 during infection, there are a limited number of assays for studying these functions. We 7 developed new reporter assays to measure virion-like particle (VLP) production and NP 8 oligomerization in live cells under biosafety level 2 conditions. We found that NP-R111C 9 significantly enhanced VLP production and slightly increased NP oligomerization without 10 impairing viral transcription and replication. By contrast, a synthetic charge-reversal mutant, NP- 11 R111E, greatly increased oligomerization but dramatically reduced transcription and replication. 12 We detected an interaction of NP with the cellular clathrin adaptor protein-1 (AP-1) complex, 13 which may explain how NP facilitates VLP production. Our study provides enhanced methods to 14 study NP and indicates a complex interplay between NP's roles in virion budding, protein 15 structure, and transcription and replication. 2 bioRxiv preprint doi: https://doi.org/10.1101/454314; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Introduction 2 Given the past and current public health threats caused by Ebola virus disease (EVD) 3 outbreaks, rapidly evaluating whether Ebola virus (EBOV) genomic mutations change viral 4 phenotypes is critically important. As an RNA virus, EBOV generates many mutations over the 5 course of an outbreak. The vast majority of these mutations likely will not be adaptive and will 6 instead have negligible or negative effects on EBOV viability and replication (Holmes 2009). 7 Yet, changes in the EBOV genome over time can have important implications for clinical patient 8 care, epidemiological modeling, and vaccine development, and thus influence prospective 9 outbreak prediction and outbreak response. 10 The need to better understand EBOV evolution became clear during the 2013‒2016 11 EVD epidemic in Western Africa caused by the EBOV Makona variant. This epidemic is the 12 largest EVD epidemic on record with over 28,000 infections and more than 11,000 deaths 13 (WHO 2016). EBOV replication generated thousands of mutations over numerous rounds of 14 human-to-human transmission (Baize et al. 2014; Gire et al. 2014; Carroll et al. 2015; Ladner et 15 al. 2015; Tong et al. 2015; Park et al. 2015; Simon-Loriere et al. 2015; Kugelman et al. 2015; T. 16 Hoenen et al. 2015; Thomas Hoenen et al. 2016; Smits et al. 2015; Quick et al. 2016), but only 17 a handful of mutations became common enough to have had a sizeable impact on the epidemic 18 (Baize et al. 2014; Gire et al. 2014; Park et al. 2015; Carroll et al. 2015; Ladner et al. 2015; 19 Tong et al. 2015; Simon-Loriere et al. 2015). These mutations define four distinct genetic EBOV 20 Makona clades, which emerged as the outbreak was accelerating in May 2014. Each of the 21 clades, termed “SL1” through “SL4,” descended from one another sequentially (e.g., SL2 22 derived from SL1), with a subsequent increase in EVD cases. Because non-synonymous 23 mutations directly change protein sequence, we focused on the only two non-synonymous 24 clade-defining mutations—one each defining the SL1 and SL2 clades. 25 3 bioRxiv preprint doi: https://doi.org/10.1101/454314; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The SL1 clade-defining mutation, C6283U, results in an A82V substitution in the EBOV 2 glycoprotein (GP-A82V) and has been studied extensively through well-established biosafety 3 level 2 (BSL-2) surrogate model systems and live virus BSL-4 studies. Because EBOV GP 4 mediates EBOV particle entry into cells and is a major target for host antibodies, GP-A82V is an 5 obvious priority for experimental studies. During outbreaks of other viral diseases, mutation in 6 viral surface proteins such as GP has altered cell tropism (e.g., Zika virus (Yuan et al. 2017)) or 7 host tropism (e.g., chikungunya virus (Tsetsarkin et al. 2007)). Based on multiple in vitro 8 studies, GP-A82V increases EBOV infectivity for a variety of human and non-human primate 9 cell types. These data suggest that the mutation confers a selective advantage to EBOV (Diehl 10 et al. 2016; Urbanowicz et al. 2016; Dietzel et al. 2017; Ueda et al. 2017; Hoffmann et al. 2017; 11 Wang et al. 2017), which however has not yet been demonstrated clearly in vivo (Marzi et al. 12 2018; Wong et al. 2018). 13 The SL2 clade-defining mutation, C800U, results in an R111C substitution in the EBOV 14 nucleoprotein (NP-R111C) and has not been thoroughly studied because, though NP has many 15 functions, there are a limited number of assays for studying these functions. While surface 16 glycoproteins like EBOV GP alter viral tropism primarily by affecting cell susceptibility (e.g., 17 increased viral entry), mutations in non-glycoproteins can also affect viral tropism by changing 18 cell permissiveness (e.g., increased viral genome replication) (Cauldwell et al. 2014; Kirmaier et 19 al. 2010; Krupp et al. 2013; Zimmermann et al. 2011). For this study, we focused our attention 20 on EBOV NP. 21 The N-terminus of EBOV NP, which contains the R111 residue, interacts with viral RNA 22 and connects multiple viral phenotypes such as virion structure, and transcription and 23 replication. During virion assembly and budding, the EBOV matrix protein VP40 dimerizes in the 24 cytoplasm, traffics to the cell membrane, and oligomerizes. VP40 oligomers engage with the 25 EBOV ribonucleoprotein (RNP) complex composed of NP, polymerase cofactor VP35, 26 transcription regulator VP30, and RNA-dependent polymerase L, and shape the cell's plasma 4 bioRxiv preprint doi: https://doi.org/10.1101/454314; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 membrane around them into EBOV virions, which exit the cell by budding (Luke D. Jasenosky 2 and Kawaoka 2004). Expression of VP40 in the absence of other viral proteins generates 3 similarly shaped particles, dubbed virion-like particles (VLPs) (Harty et al. 2000; L. D. Jasenosky 4 et al. 2001; Noda et al. 2002). Co-expression of VP40 with NP or other viral proteins 5 significantly increases the number of VLPs in cellular supernatant (Licata et al. 2004), 6 suggesting that NP plays a structural role in assembling and stabilizing VLPs. Mutations in NP 7 that affect its ability to enhance VLP production are not known. 8 EBOV NP also plays an essential role in viral transcription and replication. By directly 9 interacting with EBOV RNA, VP35, and VP30, NP recruits L to enact both of these essential 10 functions (Groseth et al. 2009). Based on EBOV NP structural data, homology modeling versus 11 other viral nucleoproteins, and site-directed mutagenesis experiments, key EBOV NP residues 12 that interact with EBOV RNA (Dong et al.
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Α Regulation of Antiviral APOBEC3G By
    STAT1-Independent Cell Type-Specific Regulation of Antiviral APOBEC3G by IFN- α This information is current as Phuong Thi Nguyen Sarkis, Songcheng Ying, Rongzhen Xu of October 2, 2021. and Xiao-Fang Yu J Immunol 2006; 177:4530-4540; ; doi: 10.4049/jimmunol.177.7.4530 http://www.jimmunol.org/content/177/7/4530 Downloaded from References This article cites 50 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/177/7/4530.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology STAT1-Independent Cell Type-Specific Regulation of Antiviral APOBEC3G by IFN-␣1 Phuong Thi Nguyen Sarkis,* Songcheng Ying,† Rongzhen Xu,† and Xiao-Fang Yu2*† APOBEC3G (A3G) has broad antiviral activity against retroviruses and hepatitis B virus. However, the role of IFNs in regulating A3G during innate immunity has not been established.
    [Show full text]
  • V. Bibliografia
    V V. Bibliografia Alce,T.M. and Popik,W. (2004). APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J. Biol. Chem. 279, 34083-34086. Barre-Sinoussi,F., Chermann,J.C., Rey,F., Nugeyre,M.T., Chamaret,S., Gruest,J., Dauguet,C., xler-Blin,C., Vezinet-Brun,F., Rouzioux,C., Rozenbaum,W., and Montagnier,L. (1983). Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868-871. Bebrone,C., Moali,C., Mahy,F., Rival,S., Docquier,J.D., Rossolini,G.M., Fastrez,J., Pratt,R.F., Frere,J.M., and Galleni,M. (2001). CENTA as a chromogenic substrate for studying beta-lactamases. Antimicrob. Agents Chemother. 45, 1868-1871. Bishop,K.N., Holmes,R.K., and Malim,M.H. (2006). Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J. Virol. 80, 8450-8458. Chiu,Y.L., Witkowska,H.E., Hall,S.C., Santiago,M., Soros,V.B., Esnault,C., Heidmann,T., and Greene,W.C. (2006). High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc. Natl. Acad. Sci. U. S. A 103, 15588-15593. Cimarelli,A. and Darlix,J.L. (2002). Assembling the human immunodeficiency virus type 1. Cell Mol. Life Sci. 59, 1166-1184. Clavel,F., Guetard,D., Brun-Vezinet,F., Chamaret,S., Rey,M.A., Santos-Ferreira,M.O., Laurent,A.G., Dauguet,C., Katlama,C., Rouzioux,C., and . (1986). Isolation of a new human retrovirus from West African patients with AIDS. Science 233, 343-346. Coffin, J.
    [Show full text]
  • Humankind 2.0: the Technologies of the Future 6. Biotech
    Humankind 2.0: The Technologies of the Future 6. Biotech Piero Scaruffi, 2017 See http://www.scaruffi.com/singular/human20.html for the full text of this discussion A brief History of Biotech 1953: Discovery of the structure of the DNA 2 A brief History of Biotech 1969: Jon Beckwith isolates a gene 1973: Stanley Cohen and Herbert Boyer create the first recombinant DNA organism 1974: Waclaw Szybalski coins the term "synthetic biology” 1975: Paul Berg organizes the Asilomar conference on recombinant DNA 3 A brief History of Biotech 1976: Genentech is founded 1977: Fred Sanger invents a method for rapid DNA sequencing and publishes the first full DNA genome of a living being Janet Rossant creates a chimera combining two mice species 1980: Genentech’s IPO, first biotech IPO 4 A brief History of Biotech 1982: The first biotech drug, Humulin, is approved for sale (Eli Lilly + Genentech) 1983: Kary Mullis invents the polymerase chain reaction (PCR) for copying genes 1986: Leroy Hood invents a way to automate gene sequencing 1986: Mario Capecchi performs gene editing on a mouse 1990: William French Anderson’s gene therapy 1990: First baby born via PGD (Alan Handyside’s lab) 5 A brief History of Biotech 1994: FlavrSavr Tomato 1994: Maria Jasin’s homing endonucleases for genome editing 1996: Srinivasan Chandrasegaran’s ZFN method for genome editing 1996: Ian Wilmut clones the first mammal, the sheep Dolly 1997: Dennis Lo detects fetal DNA in the mother’s blood 2000: George Davey Smith introduces Mendelian randomization 6 A brief History of Biotech
    [Show full text]
  • Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Alyssa Lea MacMillan University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Virology Commons Recommended Citation MacMillan, Alyssa Lea, "Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance" (2013). Publicly Accessible Penn Dissertations. 894. https://repository.upenn.edu/edissertations/894 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/894 For more information, please contact [email protected]. Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Abstract APOBEC3 proteins are important for antiretroviral defense in mammals. The activity of these factors has been well characterized in vitro, identifying cytidine deamination as an active source of viral restriction leading to hypermutation of viral DNA synthesized during reverse transcription. These mutations can result in viral lethality via disruption of critical genes, but in some cases is insufficiento t completely obstruct viral replication. This sublethal level of mutagenesis could aid in viral evolution. A cytidine deaminase-independent mechanism of restriction has also been identified, as catalytically inactive proteins are still able to inhibit infection in vitro. Murine retroviruses do not exhibit characteristics of hypermutation by mouse APOBEC3 in vivo. However, human APOBEC3G protein expressed in transgenic mice maintains antiviral restriction and actively deaminates viral genomes. The mechanism by which endogenous APOBEC3 proteins function is unclear. The mouse provides a system amenable to studying the interaction of APOBEC3 and retroviral targets in vivo.
    [Show full text]
  • RNA-Based Reprogramming
    RESEARCH HIGHLIGHTS STEM CELLS RNA-based reprogramming RNA molecules can both induce pluripo- RNA-based technique instead of viral tech- development, began producing myotubes. In tency and direct differentiation. niques for much of its induced pluripotent fact, Rossi expects that techniques using RNA The ability to make person-specific pluri- stem cell production. for differentiation will probably be adopted potent stem cells opens up many possibilities Getting the technique to work required more quickly than using RNA for reprogram- for research tools and perhaps even therapies. a lot of trial and error, says Rossi. His first ming. “I think people will have an easier time But most reprogramming techniques alter cells’ attempts to reprogram cells with RNA failed in differentiation because it’s often one factor genomes, making cells less predictable and more because cells responded as if they had been rather than several,” he says. prone to cancer-like growth. Methods to repro- infected by a virus, committing apoptosis or Making the modified RNA itself is easy, gram cells without changing their genomes launching other antiviral defenses. Swapping says Rossi, but researchers will need to exist but are inefficient and labor-intensive; out two nucleosides with similar analogs mit- spend some time tinkering to find the best most also rely on DNA and so still carry the igated the response and allowed the research- conditions for their systems. Every aspect risk of unintended genetic alterations. ers to reprogram cultured human cells by of culture conditions affects how cells are A reprogramming technique recently applying daily doses of RNAs coding for four transfected with RNA, he says.
    [Show full text]
  • Empire State Stem Cell Board Full Board Committee Meeting Minutes December 17, 2010
    Empire State Stem Cell Board Full Board Committee Meeting Minutes December 17, 2010 The Empire State Stem Cell Board held a meeting on Friday, December 17, 2010, at the offices of the Department of Health, 90 Church Street, New York, New York. Dr. David C. Hohn, M.D., presided as Vice Chair. Funding Committee Members Present: Dr. David Hohn, Chairperson Mr. Kenneth Adams Mr. Robin Elliott Dr. Bradford Berk* Dr. Mario Loomis * via videoconference Ms. Madelyn Wils Funding Committee Members Absent: Dr. Richard Daines Dr. Allen Spiegel Dr. Gerald Fischbach Dr. Michael Stocker Dr. Hilda Hutcherson Ethics Committee Members Present: Ms. Jann Armantrout Dr. Vivian Lee Fr. Thomas Berg Rev. H. Hugh Maynard-Reid Ms. Brooke Ellison* Dr. Samuel Packer Dr. Samuel Gorovitz Mr. Robert Swidler Dr. Robert Klitzman *via videoconference Ethics Committee Members Absent: Ms. Nancy Dubler Department of Health Staff Present: Dr. David Anders Ms. Susie Han Mr. Andrew Bentley Dr. Matthew Kohn Ms. Bonnie Brautigam Ms. Beth Roxland Dr. Kathy Chou Ms. Lakia Rucker Ms. Janet Cohn Dr. Lawrence Sturman Presenter: Dr. Derrick Rossi Observers Present: Ms. Jennifer Becht Ms. Caroline Marshall Mr. Joe Feldman Mr. David McKeon Mr. Mike Jolin Ms. Valeria Vavassori-Chen Ms. Elizabeth Misa Welcome and Introductions Dr. Hohn called the meeting to order and welcomed Board members, staff, and the public. He introduced Ms. Jann Armantrout, the newest member of the Ethics Committee. Dr. Hohn then asked members and staff to introduce themselves and provide their title and affiliation. Dr. Hohn stated that during the lunch break, several members had approached him to request special recognition of Dr.
    [Show full text]
  • Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins
    microorganisms Review Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins Yoshiyuki Hakata 1,* and Masaaki Miyazawa 1,2 1 Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; [email protected] 2 Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan * Correspondence: [email protected]; Tel.: +81-72-367-7660 Received: 8 December 2020; Accepted: 9 December 2020; Published: 12 December 2020 Abstract: Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3. Keywords: APOBEC3; deaminase-independent antiretroviral function; innate immunity 1.
    [Show full text]
  • Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
    SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA.
    [Show full text]
  • Hydroxychloroquine Prophylaxis and Treatment Is Ineffective in Macaque and Hamster SARS-Cov-2 Disease Models
    Hydroxychloroquine prophylaxis and treatment is ineffective in macaque and hamster SARS-CoV-2 disease models Kyle Rosenke, … , Emmie de Wit, Heinz Feldmann JCI Insight. 2020. https://doi.org/10.1172/jci.insight.143174. Research In-Press Preview COVID-19 Therapeutics Graphical abstract Find the latest version: https://jci.me/143174/pdf 1 Title: Hydroxychloroquine Prophylaxis and Treatment is Ineffective in Macaque and Hamster 2 SARS-CoV-2 Disease Models 3 4 Authors: Kyle Rosenke,1† Michael. A. Jarvis,2† Friederike Feldmann,3† BenJamin. Schwarz,4 5 Atsushi Okumura,1 JamieLovaglio,3 Greg Saturday,3 Patrick W. Hanley,3 Kimberly Meade- 6 White,1 Brandi N. Williamson,1 Frederick Hansen,1 Lizette Perez-Perez,1 Shanna Leventhal,1 7 Tsing-Lee Tang-Huau,1 Julie Callison,1 Elaine Haddock.1 Kaitlin A. Stromberg,4 Dana Scott,3 8 Graham Sewell,5 Catharine M. Bosio,4 David Hawman,1 Emmie de Wit,1 Heinz Feldmann1* 9 †These authors contributed equally 10 11 Affiliations: 1Laboratory of Virology, 3Rocky Mountain Veterinary Branch and 4Laboratory of 12 Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious 13 Diseases, National Institutes of Health, Hamilton, MT, USA; 14 2University of Plymouth; and The Vaccine Group Ltd, Plymouth, Devon, UK; 15 5The Leicester School of Pharmacy, De Montfort University, Leicester, UK 16 17 *Corresponding author: Heinz Feldmann, Rocky Mountain Laboratories, 903 S 4th Street, 18 Hamilton, MT, US-59840; Tel: (406)-375-7410; Email: [email protected] 19 20 Conflict of Interest Statement: The authors have declared that no conflict of interest exists. 21 22 ABSTRACT 23 We remain largely without effective prophylactic/therapeutic interventions for COVID-19.
    [Show full text]
  • CV Heinz Feldmann
    Curriculum Vitae M.D., Ph.D. Heinz Feldmann Name: Heinz Feldmann Forschungsschwerpunkte: hochinfektiöse Viren, Ebola-Virus, Marburg-Virus, Krankheitsmodellierung mit nichtmenschlichen Primatenmodellen, Entwicklung von Impfstoffen, Ebola-Impfstoff (rVSV-ZEBOV), Virostatika und Therapeutika Heinz Feldmann ist Virologe. Er erforscht hochinfektiöse Viren wie das Lassa-, Ebola- oder Marburg- Virus. Sein Forschungsinteresse gilt der Entwicklung von Impfstoffen. Er hat einen Impfstoff für Ebola entwickelt und gilt als international führender Ebola-Experte. Bei Ausbrüchen von Ebola, Lassa-Fieber und SARS war er vielfach Berater der WHO vor Ort. Akademischer und beruflicher Werdegang seit 2017 Graduate Faculty Associate an der Marshall University, Huntington, West Virginia, USA 2012 - 2017 Affiliate Appointment an der Washington University, Seattle, Washington, USA 2011 - 2015 Graduate Faculty an der Purdue University, West Lafayette, Indiana, USA 2010 - 2018 Faculty Affiliate an der University of Montana, Missoula, Montana, USA seit 2008 Leiter des Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, USA und Leitender Wissenschaftler der RML BSL4 Laboratories 2002 - 2012 Adjunct Professor am Department of Pathology an der University of Texas Medical Branch, Galveston, Texas, USA seit 1999 Assistant und Associate Professor am Department of Medical Microbiology, Medical Faculty an der University of Manitoba, Winnipeg, Manitoba,
    [Show full text]
  • BCRP Brochure 2021 Class
    Boston Combined Residency Program This brochure describes the residency program as we assume it will -19 exist will in be JulyThe 2021, Pediatric by which time Residency authorities Training Program predict a vaccine to COVID of available. If thatBoston is not the Children’s case and the Hospital pandemic is still active, the program Harvard Medical School will be very similar but many of the and educational conferences and other group activities Bostonwill be virtual Medical instead Center Boston University School of Medicine of in-person, as they are today. August 2020 edi,on CLASS OF 2021.. BOSTON COMBINED RESIDENCY PROGRAM Boston Medical Center Boston Children’s Hospital CONTENTS History…………........................... 3 Rotation # descriptions.................. 47# Global health fellowships............ 84# BCRP…........................................ 3# Night call................................... 53# Global health grants………….… 84 # Boston Children’s Hospital........... 3# Longitudinal ambulatory.............. 54# Diversity and Inclusion................. 84# Boston Medical Center................. 8# Electives………………………….. 55# Salaries and benefits.................... 87# People……................................... 11 Individualized curriculum............ 56# Child care................................... 88# Program director biosketches...... 11# Academic development block.. 56# O$ce of fellowship training....... 88# Residency program leadership..... 12# Education.................................... 57# Cost of living..............................
    [Show full text]