V

V. Bibliografia

Alce,T.M. and Popik,W. (2004). APOBEC3G is incorporated into -like particles by a direct interaction with HIV-1 Gag nucleocapsid . J. Biol. Chem. 279, 34083-34086. Barre-Sinoussi,F., Chermann,J.C., Rey,F., Nugeyre,M.T., Chamaret,S., Gruest,J., Dauguet,C., xler-Blin,C., Vezinet-Brun,F., Rouzioux,C., Rozenbaum,W., and Montagnier,L. (1983). Isolation of a T-lymphotropic from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868-871. Bebrone,C., Moali,C., Mahy,F., Rival,S., Docquier,J.D., Rossolini,G.M., Fastrez,J., Pratt,R.F., Frere,J.M., and Galleni,M. (2001). CENTA as a chromogenic substrate for studying beta-lactamases. Antimicrob. Agents Chemother. 45, 1868-1871. Bishop,K.N., Holmes,R.K., and Malim,M.H. (2006). Antiviral potency of APOBEC does not correlate with cytidine . J. Virol. 80, 8450-8458. Chiu,Y.L., Witkowska,H.E., Hall,S.C., Santiago,M., Soros,V.B., Esnault,C., Heidmann,T., and Greene,W.C. (2006). High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc. Natl. Acad. Sci. U. S. A 103, 15588-15593. Cimarelli,A. and Darlix,J.L. (2002). Assembling the human immunodeficiency virus type 1. Cell Mol. Life Sci. 59, 1166-1184. Clavel,F., Guetard,D., Brun-Vezinet,F., Chamaret,S., Rey,M.A., Santos-Ferreira,M.O., Laurent,A.G., Dauguet,C., Katlama,C., Rouzioux,C., and . (1986). Isolation of a new human retrovirus from West African patients with AIDS. Science 233, 343-346. Coffin, J. M. Retrovirus. Cold Sping Harbor Laboratory Press, Cold Spring Harbor, NY. Hughes, S. H. and Varmus H. H. 2007. Ref Type: Generic Conticello,S.G., Harris,R.S., and Neuberger,M.S. (2003). The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr. Biol. 13, 2009-2013. Cuthbert,R.J., Ludlam,C.A., Tucker,J., Steel,C.M., Beatson,D., Rebus,S., and Peutherer,J.F. (1990). Five year prospective study of HIV infection in the Edinburgh haemophiliac cohort. BMJ 301, 956-961. Doehle,B.P., Schafer,A., and Cullen,B.R. (2005). Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif. Virology 339, 281-288. Doranz,B.J., Rucker,J., Yi,Y., Smyth,R.J., Samson,M., Peiper,S.C., Parmentier,M., Collman,R.G., and Doms,R.W. (1996). A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149-1158. Dorfman,T., Mammano,F., Haseltine,W.A., and Gottlinger,H.G. (1994). Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J. Virol. 68, 1689-1696. Frankel,A.D. and Young,J.A. (1998). HIV-1: fifteen proteins and an RNA. Annu. Rev. Biochem. 67, 1-25. Fujita,M., Akari,H., Sakurai,A., Yoshida,A., Chiba,T., Tanaka,K., Strebel,K., and Adachi,A. (2004). Expression of HIV-1 accessory protein Vif is controlled uniquely to be low and optimal by proteasome degradation. Microbes. Infect. 6, 791-798. Gabuzda,D.H., Lawrence,K., Langhoff,E., Terwilliger,E., Dorfman,T., Haseltine,W.A., and Sodroski,J. (1992). Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol. 66, 6489-6495. Galarneau,A., Primeau,M., Trudeau,L.E., and Michnick,S.W. (2002). Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol. 20, 619-622. Goff,S.P. (2004). Genetic control of retrovirus susceptibility in mammalian cells. Annu. Rev. Genet. 38, 61-85. Goncalves,J., Jallepalli,P., and Gabuzda,D.H. (1994). Subcellular localization of the Vif protein of human immunodeficiency virus type 1. J. Virol. 68, 704-712. Honjo,T., Muramatsu,M., and Fagarasan,S. (2004). AID: how does it aid antibody diversity? Immunity. 20, 659- 668. Huthoff,H. and Malim,M.H. (2007). Identification of residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation. J. Virol. 81, 3807-3815. Janini,M., Rogers,M., Birx,D.R., and McCutchan,F.E. (2001). Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4(+) T cells. J. Virol. 75, 7973-7986. Jarmuz,A., Chester,A., Bayliss,J., Gisbourne,J., Dunham,I., Scott,J., and Navaratnam,N. (2002). An anthropoid- specific locus of orphan C to U RNA-editing on chromosome 22. Genomics 79, 285-296. Kao,S., Khan,M.A., Miyagi,E., Plishka,R., Buckler-White,A., and Strebel,K. (2003). The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. J. Virol. 77, 11398-11407. Kile,B.T., Schulman,B.A., Alexander,W.S., Nicola,N.A., Martin,H.M., and Hilton,D.J. (2002). The SOCS box: a tale of destruction and degradation. Trends Biochem. Sci. 27, 235-241.

29 |

Kobayashi,M., Takaori-Kondo,A., Miyauchi,Y., Iwai,K., and Uchiyama,T. (2005). Ubiquitination of APOBEC3G by an HIV-1 Vif-Cullin5-Elongin B-Elongin C complex is essential for Vif function. J. Biol. Chem. 280, 18573- 18578. Langlois,M.A., Beale,R.C., Conticello,S.G., and Neuberger,M.S. (2005). Mutational comparison of the single- domained APOBEC3C and double-domained APOBEC3F/G anti-retroviral cytidine deaminases provides insight into their DNA target site specificities. Nucleic Acids Res. 33, 1913-1923. Liddament,M.T., Brown,W.L., Schumacher,A.J., and Harris,R.S. (2004). APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr. Biol. 14, 1385-1391. Marin,M., Rose,K.M., Kozak,S.L., and Kabat,D. (2003). HIV-1 Vif protein binds the editing APOBEC3G and induces its degradation. Nat. Med. 9, 1398-1403. Mehle,A., Goncalves,J., Santa-Marta,M., McPike,M., and Gabuzda,D. (2004). Phosphorylation of a novel SOCS- box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Dev. 18, 2861-2866. Mehle,A., Wilson,H., Zhang,C., Brazier,A.J., McPike,M., Pery,E., and Gabuzda,D. (2007). Identification of an APOBEC3G in human immunodeficiency virus type 1 Vif and inhibitors of Vif-APOBEC3G binding. J. Virol. 81, 13235-13241. Moore,J.P. (1997). Coreceptors: implications for HIV pathogenesis and therapy. Science 276, 51-52. Oberste,M.S. and Gonda,M.A. (1992). Conservation of amino-acid sequence motifs in Vif proteins. Virus Genes 6, 95-102. Opi,S., Takeuchi,H., Kao,S., Khan,M.A., Miyagi,E., Goila-Gaur,R., Iwatani,Y., Levin,J.G., and Strebel,K. (2006). Monomeric APOBEC3G is catalytically active and has antiviral activity. J. Virol. 80, 4673-4682. Panganiban,A.T. and Fiore,D. (1988). Ordered interstrand and intrastrand DNA transfer during reverse transcription. Science 241, 1064-1069. Russell,R.A. and Pathak,V.K. (2007). Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. J. Virol. 81, 8201-8210. Schrofelbauer,B., Chen,D., and Landau,N.R. (2004). A single amino acid of APOBEC3G controls its species- specific interaction with virion infectivity factor (Vif). Proc. Natl. Acad. Sci. U. S. A 101, 3927-3932. Schrofelbauer,B., Senger,T., Manning,G., and Landau,N.R. (2006). Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G. J. Virol. 80, 5984-5991. Sheehy,A.M., Gaddis,N.C., Choi,J.D., and Malim,M.H. (2002). Isolation of a human that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646-650. Simon,J.H., Sheehy,A.M., Carpenter,E.A., Fouchier,R.A., and Malim,M.H. (1999). Mutational analysis of the human immunodeficiency virus type 1 Vif protein. J. Virol. 73, 2675-2681. Stopak,K. and Greene,W.C. (2005). Protecting APOBEC3G: a potential new target for HIV drug discovery. Curr. Opin. Investig. Drugs 6, 141-147. Strebel,K., Daugherty,D., Clouse,K., Cohen,D., Folks,T., and Martin,M.A. (1987). The HIV 'A' (sor) gene product is essential for virus infectivity. Nature 328, 728-730. Tang,H., Kuhen,K.L., and Wong-Staal,F. (1999). Lentivirus replication and regulation. Annu. Rev. Genet. 33, 133- 170. Turner,B.G. and Summers,M.F. (1999). Structural biology of HIV. J. Mol. Biol. 285, 1-32. Wedekind,J.E., Dance,G.S., Sowden,M.P., and Smith,H.C. (2003). Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 19, 207-216. Wiegand,H.L., Doehle,B.P., Bogerd,H.P., and Cullen,B.R. (2004). A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J. 23, 2451-2458. Xiao,Z., Ehrlich,E., Yu,Y., Luo,K., Wang,T., Tian,C., and Yu,X.F. (2006). Assembly of HIV-1 Vif-Cul5 E3 through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. Virology 349, 290-299. Yu,X., Yu,Y., Liu,B., Luo,K., Kong,W., Mao,P., and Yu,X.F. (2003). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056-1060. Zhang,H., Pomerantz,R.J., Dornadula,G., and Sun,Y. (2000). Human immunodeficiency virus type 1 Vif protein is an integral component of an mRNP complex of viral RNA and could be involved in the viral RNA folding and packaging process. J. Virol. 74, 8252-8261. Zhang,K.L., Mangeat,B., Ortiz,M., Zoete,V., Trono,D., Telenti,A., and Michielin,O. (2007). Model structure of human APOBEC3G. PLoS. ONE. 2, e378.

30 |