Dissociation of in Vitro DNA Deamination Activity and Physiological Functions of AID Mutants

Total Page:16

File Type:pdf, Size:1020Kb

Dissociation of in Vitro DNA Deamination Activity and Physiological Functions of AID Mutants Dissociation of in vitro DNA deamination activity and physiological functions of AID mutants Velizar Shivarov*, Reiko Shinkura*, and Tasuku Honjo† Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan Contributed by Tasuku Honjo, July 15, 2008 (sent for review May 30, 2008) Activation-induced cytidine deaminase (AID) is essential for the nation activity, CSR, and SHM. We chose a series of AID point DNA cleavage that initiates both somatic hypermutation (SHM) mutants (alanine-replacements) at residues located outside the and class switch recombination (CSR) of the Ig gene. Two alterna- domains comprising the C deamination catalytic center, and tive mechanisms of DNA cleavage by AID have been proposed: RNA those required for SHM-specificity, CSR-specificity, and nucleo- editing and DNA deamination. In support of the latter, AID has DNA cytoplasm shuttling, to avoid mutants with obvious causes of deamination activity in cell-free systems that is assumed to repre- physiological function loss (13–16). First, the mutant proteins sent its physiological function. To test this hypothesis, we gener- were synthesized in vitro by using a wheat germ cell-free system. ated various mouse AID mutants and compared their DNA deami- We analyzed the ssDNA deamination activity by using an in vitro nation, CSR, and SHM activities. Here, we compared DNA reaction with improved sensitivity by Alexa-680 substarate la- deamination, CSR, and SHM activities of various AID mutants and beling and infrared emission detection (Fig. S2). Among the found that most of their CSR or SHM activities were dispropor- mutants tested, one with alanine substituted for asparagine at tionate with their DNA deamination activities. Specifically, we position 51 (N51A) resulted in the complete loss of the ssDNA identified a cluster of mutants (H48A, L49A, R50A, and N51A) with deamination activity, compared with the same amount of wtAID low DNA deamination activity but relatively intact CSR activity. Of (Fig. 1A). Furthermore, although AID mutants at neighboring note is an AID mutant (N51A) that retained CSR function but lost sites (D45A and R50A) showed a dose-dependent DNA deami- DNA deamination activity. In addition, an APOBEC1 mutation at nation activity, N51A showed no enzymatic activity, even when N57, homologous to N51 of AID, also abolished DNA deamination the protein amount reached equimolar ratio to the substrate activity but retained RNA editing activity. These results indicate (Fig. 1B). Extended studies on the enzymatic activity of single that DNA deamination activity does not represent the physiolog- and composite mutants within the region between D45 and C55 ical function of AID. (Fig. 1C) identified a cluster of mutations between F46 and N51 that strongly reduced the DNA deamination activity, which class switch ͉ immunoglobulin gene ͉ APOBEC1 ͉ somatic hypermutation ͉ ranged from complete loss (N51A) to severe reduction (G47A, cytidine deaminases H48A, L49A, and R50A). All mutants with double or triple substitutions, including N51A, had little or no DNA deamination he activation of B cells by antigen stimulation induces their activity. Textensive proliferation in germinal centers, giving rise to The ability of wtAID to cause a mutator phenotype in E. coli somatic hypermutation (SHM) and class switch recombination is reported to be a marker for its dC to dU deamination activity (CSR) in the Ig locus. Such DNA alterations confer the antibody on ssDNA (5, 17). Therefore, we assayed the N51A mutant for memory required for effective vaccination. Activation-induced its mutagenic potential in the E. coli system. The median number cytidine deaminase (AID) is specifically expressed in activated of rifampicin-resistant colonies induced by N51A expression was B cells and is required for both SHM and CSR (1, 2). AID is a far less than that induced by wtAID and was comparable to that member of the cytidine (C) deaminase family. It possesses a C caused by vector alone or by a triple mutant in the catalytic deaminase domain that is indispensable for its physiological center, KSS (H56K-C87S-C90S), which resulted in the total loss functions, and recombinant AID catalyzes the deamination of C of any function (unpublished data) (Fig. 1D). Sequencing of the in vitro (1). There is, however, a long-standing dispute about mutational hot-spot region of the rpoB gene in rifampicin- whether AID deaminates C to uridine (U) on DNA (DNA resistant clones revealed that the N51A mutation profile was deamination model) (3–5) or on RNA (RNA editing model) indistinguishable from those of KSS and vector alone that may (6–8). The DNA deamination model is based on the observa- be attributable to an intrinsic mutagenic potential of E. coli as tions that AID induces a mutator phenotype in Escherichia coli reported (5) (Fig. S3). These assessments of DNA deamination and catalyzes the deamination of dC on single-stranded (ss) activity in the cell-free and E. coli systems clearly indicate that DNA in vitro (4, 5, 9, 10). However, AID’s structural homology N51A possesses no DNA deamination activity. with APOBEC1 (1), a well established RNA editing C deami- nase, suggests that it may edit mRNA to generate mRNAs Dissociation of DNA Deamination Activity and Physiological Function. encoding putative endonucleases or their guiding factors (7). We next assessed the CSR activity of three mutants (D45A, This view is supported by the requirement for de novo protein R50A, and N51A) that carried normal, 20%, and no DNA synthesis (11, 12) and the nucleo-cytoplasmic shuttling of AID deamination activity, respectively, compared with wtAID. We to achieve CSR (13). Thus, to clarify the mechanism by which expressed a similar level of AID and its mutant proteins in AID promotes CSR, we examined the requirement for AID to deaminate dC on ssDNA to exert its physiological CSR activity. For this purpose, we looked for loss-of-deamination mutants of Author contributions: R.S. and T.H. designed research; V.S. and R.S. performed research; AID that could still mediate CSR, because such mutants should V.S., R.S., and T.H. analyzed data; and T.H. wrote the paper. not exist if the DNA deamination activity is essential for AID The authors declare no conflict of interest. function [supporting information (SI) Fig. S1]. *V.S. and R.S. contributed equally to this work. †To whom correspondence should be addressed. E-mail: [email protected]. Results and Discussion This article contains supporting information online at www.pnas.org/cgi/content/full/ DNA Deamination Activity of AID Mutants. We aimed to investigate 0806641105/DCSupplemental. the correlation between three activities of AID, ssDNA deami- © 2008 by The National Academy of Sciences of the USA 15866–15871 ͉ PNAS ͉ October 14, 2008 ͉ vol. 105 ͉ no. 41 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0806641105 Downloaded by guest on September 29, 2021 A B 100 90 D45A 80 Wild- No AID Wild-type D45A R50A N51A 70 type % cleavage 0 85 86 27 0 60 b 50 40 26 R50A (% cleavage) 30 13 20 Deamination activity 10 N51A anti-His 0 0 0.2 0.4 0.6 0.8 1.0 Molar ratio of enzyme to substrate 140 C D WB: anti-AID 160 D 120 -type 140 S ector ild S 120 V W K N51A 100 100 viable cells viable 80 9 80 60 activity (%) 40 20 60 Relative deamination 0 40 A 4A 6A 1 40 52A 5 55A 51A Mutants per 10 D45AF46A H48AL49AR50AN51AK S53A C F4 G47A G -N -N51A A A A-N5 Wild-type 45 20 D45A-D45A-R50AD R50 R50 5 5 7 45A- D 0 Vector Wild-type KSS N51A Fig. 1. In vitro DNA deamination activity of AID and its mutants. (A) Representative polyacrylamide gel electrophoresis analysis of the deamination activity by AID and its mutants. The 13- and 26-base bands indicate the product (deaminated and cleaved) ssDNA and substrate ssDNA, respectively. Western blot analysis shows that comparable amounts of AID protein were used. (B) Titration of AID and its mutants. All reactions contained 5 nM oligonucleotide and proteins at the indicated enzyme/substrate molar ratios, and each assay was repeated more than three times. (C) The relative deamination activity of each mutant was determined as a percentage of the wtAID activity at the enzyme concentration showing 50% cleavage by wtAID. Bars above columns represent mean Ϯ SD. (D) Frequencies of RifR mutants generated after overnight culture of E. coli BL21 carrying an expression plasmid for AID, its mutants, or a vector control in the presence of isopropyl ␤-D-thiogalactoside. Each point represents the RifR colony number per 109 viable cells from an independent overnight culture. The median number of RifR colonies is indicated. Western blot analysis of whole lysates (107 viable cells) shows that the protein amounts of the mutant AIDs were not less than that of wtAID. AIDϪ/Ϫ spleen B cells by retroviral gene transfer. We estimated after retroviral gene transfer, we extracted the genomic DNA the percentage of IgG1ϩ-infected cells, 72 h after culturing, with and sequenced the GFP gene, as described (16) (Fig. 2D). All of LPS and IL-4 (Fig. 2A). Surprisingly, the deamination-defective the mutants showed Ͻ20% of the SHM activity of wtAID except mutant N51A showed half the WT level of CSR activity. for R50A (30%), C55A (34%), and S53A (120%). Furthermore, although D45A had normal DNA deamination DNA deamination, CSR, and SHM activities of each AID activity, it showed a very weak CSR activity. In contrast, R50A, mutant relative to wtAID are summarized in Fig. 2E. The results which had only 20% of the wtDNA deamination activity, showed indicated that most of the mutants lost the three activities even stronger CSR activity than did wtAID.
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Α Regulation of Antiviral APOBEC3G By
    STAT1-Independent Cell Type-Specific Regulation of Antiviral APOBEC3G by IFN- α This information is current as Phuong Thi Nguyen Sarkis, Songcheng Ying, Rongzhen Xu of October 2, 2021. and Xiao-Fang Yu J Immunol 2006; 177:4530-4540; ; doi: 10.4049/jimmunol.177.7.4530 http://www.jimmunol.org/content/177/7/4530 Downloaded from References This article cites 50 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/177/7/4530.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology STAT1-Independent Cell Type-Specific Regulation of Antiviral APOBEC3G by IFN-␣1 Phuong Thi Nguyen Sarkis,* Songcheng Ying,† Rongzhen Xu,† and Xiao-Fang Yu2*† APOBEC3G (A3G) has broad antiviral activity against retroviruses and hepatitis B virus. However, the role of IFNs in regulating A3G during innate immunity has not been established.
    [Show full text]
  • V. Bibliografia
    V V. Bibliografia Alce,T.M. and Popik,W. (2004). APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J. Biol. Chem. 279, 34083-34086. Barre-Sinoussi,F., Chermann,J.C., Rey,F., Nugeyre,M.T., Chamaret,S., Gruest,J., Dauguet,C., xler-Blin,C., Vezinet-Brun,F., Rouzioux,C., Rozenbaum,W., and Montagnier,L. (1983). Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868-871. Bebrone,C., Moali,C., Mahy,F., Rival,S., Docquier,J.D., Rossolini,G.M., Fastrez,J., Pratt,R.F., Frere,J.M., and Galleni,M. (2001). CENTA as a chromogenic substrate for studying beta-lactamases. Antimicrob. Agents Chemother. 45, 1868-1871. Bishop,K.N., Holmes,R.K., and Malim,M.H. (2006). Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J. Virol. 80, 8450-8458. Chiu,Y.L., Witkowska,H.E., Hall,S.C., Santiago,M., Soros,V.B., Esnault,C., Heidmann,T., and Greene,W.C. (2006). High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc. Natl. Acad. Sci. U. S. A 103, 15588-15593. Cimarelli,A. and Darlix,J.L. (2002). Assembling the human immunodeficiency virus type 1. Cell Mol. Life Sci. 59, 1166-1184. Clavel,F., Guetard,D., Brun-Vezinet,F., Chamaret,S., Rey,M.A., Santos-Ferreira,M.O., Laurent,A.G., Dauguet,C., Katlama,C., Rouzioux,C., and . (1986). Isolation of a new human retrovirus from West African patients with AIDS. Science 233, 343-346. Coffin, J.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Alyssa Lea MacMillan University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Virology Commons Recommended Citation MacMillan, Alyssa Lea, "Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance" (2013). Publicly Accessible Penn Dissertations. 894. https://repository.upenn.edu/edissertations/894 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/894 For more information, please contact [email protected]. Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Abstract APOBEC3 proteins are important for antiretroviral defense in mammals. The activity of these factors has been well characterized in vitro, identifying cytidine deamination as an active source of viral restriction leading to hypermutation of viral DNA synthesized during reverse transcription. These mutations can result in viral lethality via disruption of critical genes, but in some cases is insufficiento t completely obstruct viral replication. This sublethal level of mutagenesis could aid in viral evolution. A cytidine deaminase-independent mechanism of restriction has also been identified, as catalytically inactive proteins are still able to inhibit infection in vitro. Murine retroviruses do not exhibit characteristics of hypermutation by mouse APOBEC3 in vivo. However, human APOBEC3G protein expressed in transgenic mice maintains antiviral restriction and actively deaminates viral genomes. The mechanism by which endogenous APOBEC3 proteins function is unclear. The mouse provides a system amenable to studying the interaction of APOBEC3 and retroviral targets in vivo.
    [Show full text]
  • Mutator Catalogues and That the Proportion of CG Muta- Types
    RESEARCH HIGHLIGHTS carcinoma. Moreover, the authors of APOBEC3B mRNA were generally GENOMICS found that 60–90% of mutations in higher, indicating that this is the these tumours affected CG base pairs, major mutator across the 13 cancer Mutator catalogues and that the proportion of CG muta- types. Using carcinogenic mutation tions correlated with the expression catalogues (such as the Cancer Gene of APOBEC3B across cancer types. Census and COSMIC) the authors Because APOBECs target cytosines found that APOBEC-signature within specific sequence contexts, mutations were prevalent in a subset the authors examined the cytosine of genes considered to be drivers of mutation signatures and found, for cancer, indicating that APOBEC- example, that those signatures in mediated mutation may initiate bladder and cervical cancers were and/or drive carcinogenesis. similar, and were biased towards the Taking a broader approach, optimum APOBEC3B motif (which Alexandrov and colleagues sought STOCKBYTE is TCA). The authors also found that to assess the mutational landscape bladder, cervical, head and neck, of >7,000 cancers, using exome and breast cancer, as well as lung and whole-genome sequence The sequencing of cancer genomes adenocarcinoma and lung squamous data. Their analyses revealed 21 has confirmed the complexity of cell carcinoma, all of which had distinct mutational signatures APOBEC3B is the somatic mutations that occur in the strongest APOBEC3B-specific that occurred, to different extents a mutator in tumours. However, there seem to cytosine mutation signatures, had the and in different combinations, be some patterns in the mutation highest levels of cytosine mutation across 30 cancer types. The most several types spectra, such as preference for muta- clustering.
    [Show full text]
  • Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins
    microorganisms Review Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins Yoshiyuki Hakata 1,* and Masaaki Miyazawa 1,2 1 Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; [email protected] 2 Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan * Correspondence: [email protected]; Tel.: +81-72-367-7660 Received: 8 December 2020; Accepted: 9 December 2020; Published: 12 December 2020 Abstract: Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3. Keywords: APOBEC3; deaminase-independent antiretroviral function; innate immunity 1.
    [Show full text]
  • Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
    SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA.
    [Show full text]
  • 1 APOBEC-Mediated Mutagenesis in Urothelial Carcinoma Is Associated
    bioRxiv preprint doi: https://doi.org/10.1101/123802; this version posted April 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response Alexander P. Glaser MD, Damiano Fantini PhD, Kalen J. Rimar MD, Joshua J. Meeks MD PhD APG, DF, KJR, JJM: Northwestern University, Department of Urology, Chicago, IL, 60607 Running title: APOBEC mutagenesis in bladder cancer *Corresponding author: Joshua J. Meeks, MD PhD 303 E. Chicago Ave. Tarry 16-703 Chicago, IL 60611 Email: [email protected] Keywords (4-6): • Urinary bladder neoplasms • APOBEC Deaminases • Mutagenesis • DNA damage • Interferon Abbreviations and Acronyms: TCGA – The Cancer Genome Atlas ssDNA – single stranded DNA APOBEC –apolipoprotein B mRNA editing catalytic polypeptide-like GCAC – Genome Data Analysis Center MAF – mutation annotation format “APOBEC-high” – tumors enriched for APOBEC mutagenesis “APOBEC-low” – tumors not enriched for APOBEC mutagenesis 1 bioRxiv preprint doi: https://doi.org/10.1101/123802; this version posted April 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: Background: The APOBEC family of enzymes is responsible for a mutation signature characterized by a TCW>T/G mutation. APOBEC-mediated mutagenesis is implicated in a wide variety of tumors, including bladder cancer. In this study, we explore the APOBEC mutational signature in bladder cancer and the relationship with specific mutations, molecular subtype, gene expression, and survival.
    [Show full text]
  • New Mechanism for APOBEC3G? AUTOIMMUNITY TLR Ligands Are Not Sufficient to Break Cross-Tolerance to Self-Antigens
    RESEARCH HIGHLIGHTS VIRAL IMMUNITY IN BRIEF New mechanism for APOBEC3G? AUTOIMMUNITY TLR ligands are not sufficient to break cross-tolerance to self-antigens. Hamilton-Williams, E. E. et al. J. Immunol. 174, 1159–1163 (2005). The presence of autoreactive T cells in individuals who do not have autoimmune disease shows that this is not sufficient for the induction of pathology. This paper looked at the potential role of Toll-like receptor (TLR) ligation in providing non- specific inflammatory signals that are required to turn potential autoreactivity into overt disease. Transgenic mice expressing ovalbumin in pancreatic β-cells under control of the rat insulin promoter (RIP-mOVA mice) do not develop diabetes when injected with OVA-specific CD8+ T (OT-I) cells in the absence of specific CD4+ T-cell help, owing to T-cell deletion by cross-tolerizing dendritic cells (DCs). When these mice were also injected with ligands for TLR2, TLR3, TLR4 or TLR9, which could activate the DCs for cross-priming, the Members of the APOBEC protein did not significantly affect antiviral OT-I cells were still deleted unless OVA-specific CD4+ family all contain consensus cytidine- activity against susceptible strains T (OT-II) cells were added. Therefore, TLR ligation alone deaminase motifs, some of which have of HIV-1. Comparison of the differ- is not sufficient to break tolerance in this model, which is been shown to catalyse the deami- ent APOBEC3G mutants showed supported by the fact that infection with TLR-ligand-bearing nation of cytidine to uridine in DNA that antiviral activity depends on at pathogens does not commonly result in autoimmunity.
    [Show full text]
  • Genetic and Biochemical Studies of Human Apobec Family of Proteins Priyanga Wijesinghe Wayne State University
    Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Genetic and biochemical studies of human apobec family of proteins Priyanga Wijesinghe Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Wijesinghe, Priyanga, "Genetic and biochemical studies of human apobec family of proteins" (2012). Wayne State University Dissertations. Paper 584. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. GENETIC AND BIOCHEMICAL STUDIES OF HUMAN APOBEC FAMILY OF PROTEINS by PRIYANGA WIJESINGHE DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2012 MAJOR : CHEMISTRY (Biochemistry) Approved by: Advisor Date © COPYRIGHT BY PRIYANGA WIJESINGHE 2012 All Rights Reserved DEDICATION To my wife Thiloka and daughter Senuli ii ACKNOWLEDGMENTS I would like to thank my thesis advisor Dr. Ashok S. Bhagwat for his exceptional guidance, supervision and help during my graduate research career. I take this opportunity to thank my thesis committee Dr. Andrew L. Feig, Dr. Jeremy Kodanko and Dr. T.R. Reddy for their valuable comments and suggestions. Also, I would like to extend my thanks to Dr. Thomas Holland, Dr. David Rueda, and Dr. John SantaLucia. I must thank my present lab members Sophia Shalhout, Thisari Guruge, Shaqiao Wei, Anita Chalasani, Amanda Arnorld, Casey Jackson, Nadeem Kandalaft and Richard Evans for friendship and mutual support. Special thanks go to my former lab members Dr.
    [Show full text]
  • Insights Into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions
    viruses Review Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions Xiaojiang S. Chen 1,2,3 1 Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA; [email protected]; Tel.: +1-213-740-5487 2 Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA 3 Center of Excellence in NanoBiophysics/Structural Biology, University of Southern California, Los Angeles, CA 90089, USA Abstract: Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single- stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage Citation: Chen, X.S. Insights into and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is the Structures and Multimeric Status more complicated than others, due to the associated complex RNA binding modes.
    [Show full text]