RNA Editing Enzyme APOBEC3A Promotes Pro-Inflammatory M1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
Integrated Bioinformatic Analysis of RNA Binding Proteins in Hepatocellular Carcinoma
www.aging-us.com AGING 2021, Vol. 13, No. 2 Research Paper Integrated bioinformatic analysis of RNA binding proteins in hepatocellular carcinoma Ling Wang1,*, Zhen Zhang2,3,*, Yuan Li1, Yanyan Wan1, Baocai Xing1,& 1Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital and Institute, Beijing 100142, China 2Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China 3Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing 100044, China *Equal contribution Correspondence to: Baocai Xing; email: [email protected] Keywords: RNA binding protein, hepatocellular carcinoma, biomarker, transcriptomics, proteomics Received: June 8, 2020 Accepted: November 3, 2020 Published: December 19, 2020 Copyright: © 2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT RNA binding proteins (RBPs) are aberrantly expressed in a tissue-specific manner across many tumors. These proteins, which play a vital role in post-transcriptional gene regulation, are involved in RNA splicing, maturation, transport, stability, degradation, and translation. We set out to establish an accurate risk score model based on RBPs to estimate prognosis in hepatocellular carcinoma (HCC). RNA-sequencing data, proteomic data and corresponding clinical information were acquired from the Cancer Genome Atlas database and the Clinical Proteomic Tumor Analysis Consortium database respectively. We identified 406 differentially expressed RBPs between HCC tumor and normal tissues at the transcriptional and protein level. -
Herpes Simplex Virus Blocks Host Transcription Termination Via the Bimodal Activities of ICP27
ARTICLE https://doi.org/10.1038/s41467-019-14109-x OPEN Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27 Xiuye Wang 1, Thomas Hennig2, Adam W. Whisnant 2, Florian Erhard 2, Bhupesh K. Prusty 2, Caroline C. Friedel 3, Elmira Forouzmand4,5, William Hu1, Luke Erber 6, Yue Chen6, Rozanne M. Sandri-Goldin 1*, Lars Dölken 2,7* & Yongsheng Shi1* Infection by viruses, including herpes simplex virus-1 (HSV-1), and cellular stresses cause 1234567890():,; widespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) in host genes. However, the underlying mechanisms remain unclear. Here, we demonstrate that the HSV-1 immediate early protein ICP27 induces DoTT by directly binding to the essential mRNA 3’ processing factor CPSF. It thereby induces the assembly of a dead-end 3’ processing complex, blocking mRNA 3’ cleavage. Remarkably, ICP27 also acts as a sequence- dependent activator of mRNA 3’ processing for viral and a subset of host transcripts. Our results unravel a bimodal activity of ICP27 that plays a key role in HSV-1-induced host shutoff and identify CPSF as an important factor that mediates regulation of transcription termination. These findings have broad implications for understanding the regulation of transcription termination by other viruses, cellular stress and cancer. 1 Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA. 2 Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany. 3 Institute of Informatics, Ludwig-Maximilians-Universität München, München, Germany. 4 Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA. -
Long Intergenic Non-Coding Rnas in Hepatocellular Carcinoma—A Focus on Linc00176
Editorial Page 1 of 4 Long intergenic non-coding RNAs in hepatocellular carcinoma—a focus on Linc00176 Marco Y. W. Zaki1,2, Helen L. Reeves1,3 1Northern Institute for Cancer Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 2Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt; 3Hepatopancreatobiliary Multidisciplinary Team, Freeman Hospital, Newcastle- upon-Tyne Hospitals NHS foundation, Newcastle upon Tyne, UK Correspondence to: Professor Helen L. Reeves. Northern Institute for Cancer Research, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK. Email: [email protected]. Provenance: This is a Guest Editorial commissioned by Section Editor Meiyi Song (Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China). Comment on: Tran DD, Kessler C, Niehus SE, et al. Myc target gene, long intergenic noncoding RNA, Linc00176 in hepatocellular carcinoma regulates cell cycle and cell survival by titrating tumor suppressor microRNAs. Oncogene 2018;37:75-85. Received: 06 February 2018; Accepted: 13 February 2018; Published: 19 March 2018. doi: 10.21037/ncri.2018.03.02 View this article at: http://dx.doi.org/10.21037/ncri.2018.03.02 Liver cancer is a common type of cancer that ranks the identification of novel candidate therapeutic targets. the second in cancer-related mortality world-wide (1). High-throughput sequencing techniques in combination Hepatocellular carcinoma (HCC) is the predominant type with advanced computational predicting software and of liver cancer and it usually arises on the background of epigenetic tools have identified novel RNA transcripts and cirrhosis. Risk factors associated with the incidence of are even capable of predicting specific functions. -
Longitudinal Peripheral Blood Transcriptional Analysis of COVID-19 Patients
medRxiv preprint doi: https://doi.org/10.1101/2020.05.05.20091355; this version posted May 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Longitudinal peripheral blood transcriptional analysis of COVID-19 patients 2 captures disease progression and reveals potential biomarkers 3 Qihong Yan1,5,†, Pingchao Li1,†, Xianmiao Ye1,†, Xiaohan Huang1,5,†, Xiaoneng Mo2, 4 Qian Wang1, Yudi Zhang1, Kun Luo1, Zhaoming Chen1, Jia Luo1, Xuefeng Niu3, Ying 5 Feng3, Tianxing Ji3, Bo Feng3, Jinlin Wang2, Feng Li2, Fuchun Zhang2, Fang Li2, 6 Jianhua Wang1, Liqiang Feng1, Zhilong Chen4,*, Chunliang Lei2,*, Linbing Qu1,*, Ling 7 Chen1,2,3,4,* 8 1Guangzhou Regenerative Medicine and Health-Guangdong Laboratory 9 (GRMH-GDL), Guangdong Laboratory of Computational Biomedicine, Guangzhou 10 Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 11 China 12 2Guangzhou Institute of Infectious Disease, Guangzhou Eighth People’s Hospital, 13 Guangzhou Medical University, Guangzhou, China 14 3State Key Laboratory of Respiratory Disease, National Clinical Research Center for 15 Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated 16 Hospital of Guangzhou Medical University, Guangzhou, China 17 4School of Medicine, Huaqiao University, Xiamen, China 18 5University of Chinese Academy of Science, Beijing, China 19 †These authors contributed equally to this work. 20 *To whom correspondence should be addressed: Ling Chen ([email protected]), 21 Linbing Qu ([email protected]), Chunliang Lei ([email protected]), Zhilong 22 Chen ([email protected]) NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. -
Α Regulation of Antiviral APOBEC3G By
STAT1-Independent Cell Type-Specific Regulation of Antiviral APOBEC3G by IFN- α This information is current as Phuong Thi Nguyen Sarkis, Songcheng Ying, Rongzhen Xu of October 2, 2021. and Xiao-Fang Yu J Immunol 2006; 177:4530-4540; ; doi: 10.4049/jimmunol.177.7.4530 http://www.jimmunol.org/content/177/7/4530 Downloaded from References This article cites 50 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/177/7/4530.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology STAT1-Independent Cell Type-Specific Regulation of Antiviral APOBEC3G by IFN-␣1 Phuong Thi Nguyen Sarkis,* Songcheng Ying,† Rongzhen Xu,† and Xiao-Fang Yu2*† APOBEC3G (A3G) has broad antiviral activity against retroviruses and hepatitis B virus. However, the role of IFNs in regulating A3G during innate immunity has not been established. -
V. Bibliografia
V V. Bibliografia Alce,T.M. and Popik,W. (2004). APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J. Biol. Chem. 279, 34083-34086. Barre-Sinoussi,F., Chermann,J.C., Rey,F., Nugeyre,M.T., Chamaret,S., Gruest,J., Dauguet,C., xler-Blin,C., Vezinet-Brun,F., Rouzioux,C., Rozenbaum,W., and Montagnier,L. (1983). Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868-871. Bebrone,C., Moali,C., Mahy,F., Rival,S., Docquier,J.D., Rossolini,G.M., Fastrez,J., Pratt,R.F., Frere,J.M., and Galleni,M. (2001). CENTA as a chromogenic substrate for studying beta-lactamases. Antimicrob. Agents Chemother. 45, 1868-1871. Bishop,K.N., Holmes,R.K., and Malim,M.H. (2006). Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J. Virol. 80, 8450-8458. Chiu,Y.L., Witkowska,H.E., Hall,S.C., Santiago,M., Soros,V.B., Esnault,C., Heidmann,T., and Greene,W.C. (2006). High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc. Natl. Acad. Sci. U. S. A 103, 15588-15593. Cimarelli,A. and Darlix,J.L. (2002). Assembling the human immunodeficiency virus type 1. Cell Mol. Life Sci. 59, 1166-1184. Clavel,F., Guetard,D., Brun-Vezinet,F., Chamaret,S., Rey,M.A., Santos-Ferreira,M.O., Laurent,A.G., Dauguet,C., Katlama,C., Rouzioux,C., and . (1986). Isolation of a new human retrovirus from West African patients with AIDS. Science 233, 343-346. Coffin, J. -
Depletion of Three Combined THOC5 Mrna Export Protein Target Genes Synergistically Induces Human Hepatocellular Carcinoma Cell Death
Oncogene (2016) 35, 3872–3879 © 2016 Macmillan Publishers Limited All rights reserved 0950-9232/16 www.nature.com/onc SHORT COMMUNICATION Depletion of three combined THOC5 mRNA export protein target genes synergistically induces human hepatocellular carcinoma cell death S Saran1,4, DDH Tran1,4, F Ewald2, A Koch1, A Hoffmann3, M Koch2, B Nashan2 and T Tamura1 Hepatocellular carcinoma (HCC) is a frequent form of cancer with a poor prognosis and with limited possibilities of medical intervention. It has been shown that over 100 putative driver genes are associated with multiple recurrently altered pathways in HCC, suggesting that multiple pathways will need to be inhibited for any therapeutic method. mRNA processing is regulated by a complex RNA–protein network that is essential for the maintenance of homeostasis. THOC5, a member of mRNA export complex, has a role in less than 1% of mRNA processing, and is required for cell growth and differentiation, but not for cell survival in normal fibroblasts, hepatocytes and macrophages. In this report, we show that 50% depletion of THOC5 in human HCC cell lines Huh7 and HepG2 induced apoptosis. Transcriptome analysis using THOC5-depleted cells revealed that 396 genes, such as transmembrane BAX inhibitor motif containing 4 (TMBIM4), transmembrane emp24-like trafficking protein 10 (Tmed10) and D-tyrosyl-tRNA deacylase 2 (Dtd2) genes were downregulated in both cell lines. The depletion of one of these THOC5 target genes in Huh7 or HepG2 did not significantly induce cell death, suggesting that these may be fine tuners for HCC cell survival. However, the depletion of a combination of these genes synergistically increased the number of TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)-positive HCC. -
Apoptotic Cells Inflammasome Activity During the Uptake of Macrophage
Downloaded from http://www.jimmunol.org/ by guest on September 29, 2021 is online at: average * The Journal of Immunology , 26 of which you can access for free at: 2012; 188:5682-5693; Prepublished online 20 from submission to initial decision 4 weeks from acceptance to publication April 2012; doi: 10.4049/jimmunol.1103760 http://www.jimmunol.org/content/188/11/5682 Complement Protein C1q Directs Macrophage Polarization and Limits Inflammasome Activity during the Uptake of Apoptotic Cells Marie E. Benoit, Elizabeth V. Clarke, Pedro Morgado, Deborah A. Fraser and Andrea J. Tenner J Immunol cites 56 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/04/20/jimmunol.110376 0.DC1 This article http://www.jimmunol.org/content/188/11/5682.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 29, 2021. The Journal of Immunology Complement Protein C1q Directs Macrophage Polarization and Limits Inflammasome Activity during the Uptake of Apoptotic Cells Marie E. -
Common Differentially Expressed Genes and Pathways Correlating Both Coronary Artery Disease and Atrial Fibrillation
EXCLI Journal 2021;20:126-141– ISSN 1611-2156 Received: December 08, 2020, accepted: January 11, 2021, published: January 18, 2021 Supplementary material to: Original article: COMMON DIFFERENTIALLY EXPRESSED GENES AND PATHWAYS CORRELATING BOTH CORONARY ARTERY DISEASE AND ATRIAL FIBRILLATION Youjing Zheng, Jia-Qiang He* Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA * Corresponding author: Jia-Qiang He, Department of Biomedical Sciences and Pathobiology, Virginia Tech, Phase II, Room 252B, Blacksburg, VA 24061, USA. Tel: 1-540-231-2032. E-mail: [email protected] https://orcid.org/0000-0002-4825-7046 Youjing Zheng https://orcid.org/0000-0002-0640-5960 Jia-Qiang He http://dx.doi.org/10.17179/excli2020-3262 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). Supplemental Table 1: Abbreviations used in the paper Abbreviation Full name ABCA5 ATP binding cassette subfamily A member 5 ABCB6 ATP binding cassette subfamily B member 6 (Langereis blood group) ABCB9 ATP binding cassette subfamily B member 9 ABCC10 ATP binding cassette subfamily C member 10 ABCC13 ATP binding cassette subfamily C member 13 (pseudogene) ABCC5 ATP binding cassette subfamily C member 5 ABCD3 ATP binding cassette subfamily D member 3 ABCE1 ATP binding cassette subfamily E member 1 ABCG1 ATP binding cassette subfamily G member 1 ABCG4 ATP binding cassette subfamily G member 4 ABHD18 Abhydrolase domain -
Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Alyssa Lea MacMillan University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Virology Commons Recommended Citation MacMillan, Alyssa Lea, "Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance" (2013). Publicly Accessible Penn Dissertations. 894. https://repository.upenn.edu/edissertations/894 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/894 For more information, please contact [email protected]. Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Abstract APOBEC3 proteins are important for antiretroviral defense in mammals. The activity of these factors has been well characterized in vitro, identifying cytidine deamination as an active source of viral restriction leading to hypermutation of viral DNA synthesized during reverse transcription. These mutations can result in viral lethality via disruption of critical genes, but in some cases is insufficiento t completely obstruct viral replication. This sublethal level of mutagenesis could aid in viral evolution. A cytidine deaminase-independent mechanism of restriction has also been identified, as catalytically inactive proteins are still able to inhibit infection in vitro. Murine retroviruses do not exhibit characteristics of hypermutation by mouse APOBEC3 in vivo. However, human APOBEC3G protein expressed in transgenic mice maintains antiviral restriction and actively deaminates viral genomes. The mechanism by which endogenous APOBEC3 proteins function is unclear. The mouse provides a system amenable to studying the interaction of APOBEC3 and retroviral targets in vivo. -
Supplementary Information.Pdf
Supplementary Information Whole transcriptome profiling reveals major cell types in the cellular immune response against acute and chronic active Epstein‐Barr virus infection Huaqing Zhong1, Xinran Hu2, Andrew B. Janowski2, Gregory A. Storch2, Liyun Su1, Lingfeng Cao1, Jinsheng Yu3, and Jin Xu1 Department of Clinical Laboratory1, Children's Hospital of Fudan University, Minhang District, Shanghai 201102, China; Departments of Pediatrics2 and Genetics3, Washington University School of Medicine, Saint Louis, Missouri 63110, United States. Supplementary information includes the following: 1. Supplementary Figure S1: Fold‐change and correlation data for hyperactive and hypoactive genes. 2. Supplementary Table S1: Clinical data and EBV lab results for 110 study subjects. 3. Supplementary Table S2: Differentially expressed genes between AIM vs. Healthy controls. 4. Supplementary Table S3: Differentially expressed genes between CAEBV vs. Healthy controls. 5. Supplementary Table S4: Fold‐change data for 303 immune mediators. 6. Supplementary Table S5: Primers used in qPCR assays. Supplementary Figure S1. Fold‐change (a) and Pearson correlation data (b) for 10 cell markers and 61 hypoactive and hyperactive genes identified in subjects with acute EBV infection (AIM) in the primary cohort. Note: 23 up‐regulated hyperactive genes were highly correlated positively with cytotoxic T cell (Tc) marker CD8A and NK cell marker CD94 (KLRD1), and 38 down‐regulated hypoactive genes were highly correlated positively with B cell, conventional dendritic cell