Nano Comes to Life
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spring-8 Highlights 2014
Three‐way Meeting 2015 27th ‐28th Feb. 2015 SPring‐8 Highlights 2014 Photo by Shigeki Tsujimoto Masaki Takata RIKEN SPring‐8 Center 1 How SPring‐8 really works? What is benefits of Science? 2 It was important to map SPring‐8 in society as well as science community. 3 Overview • Building Brand • Expanding Cooperation • Increasing Awareness • Shaping Future 4 Building Brand • Tissue Engineering • Critical Materials Strategy • Quantum Nano Dynamics • SR Magnetism • Nano Applications 5 Tissue Engineering Cardiac Regenerative Nobel Laureate Therapy Using Cell Sheets S. Yamanaka Integration of iPSC‐cardiomyocytes in the Heart non‐invasive investigation of regional beating of cardiac muscle Prof. Yoshiki Sawa Dept. of Cardiovascular Surgery Osaka University iPSC‐CMs‐ transplanted heart day 14 Showing synchronized contraction of the iPSC‐CMs sham‐operated in the sheet. heart Arrows indicate timing of end diastole. SAXS: Regional beating of Rat heart CT‐1353 Accepted 12/20/2014 for publication in “Cell Transplantation” 6 Critical Materials Strategy Elements Strategy Initiative Center for Magnetic Materials (ESICMM) Smart Visualization for Domain Engineering Kazuhiro Hono A key tool to quest for Dy‐free Nd‐Fe‐B Permanent Magnets NIMS Fellow Director of Magnetic Materials Unit BL25SU: Soft X‐ray Soft X‐ray Nano Spectroscopy Beamline; BL25SU Nano Application Since 2014 7 Critical Materials Strategy Elements Strategy Initiative Center for Magnetic Materials (ESICMM) Micro Magnetic Simulation Concerted with SPring‐8 A key tool to quest for Dy‐free Nd‐Fe‐B Permanent Magnets Shinji Tsuneyuki University of Tokyo, Computational Materials Science Initiative Domain information upgrades a simulation technology. K‐Computer H. Sepehri-Amin et al., 8 Scripta Mater. -
Humankind 2.0: the Technologies of the Future 6. Biotech
Humankind 2.0: The Technologies of the Future 6. Biotech Piero Scaruffi, 2017 See http://www.scaruffi.com/singular/human20.html for the full text of this discussion A brief History of Biotech 1953: Discovery of the structure of the DNA 2 A brief History of Biotech 1969: Jon Beckwith isolates a gene 1973: Stanley Cohen and Herbert Boyer create the first recombinant DNA organism 1974: Waclaw Szybalski coins the term "synthetic biology” 1975: Paul Berg organizes the Asilomar conference on recombinant DNA 3 A brief History of Biotech 1976: Genentech is founded 1977: Fred Sanger invents a method for rapid DNA sequencing and publishes the first full DNA genome of a living being Janet Rossant creates a chimera combining two mice species 1980: Genentech’s IPO, first biotech IPO 4 A brief History of Biotech 1982: The first biotech drug, Humulin, is approved for sale (Eli Lilly + Genentech) 1983: Kary Mullis invents the polymerase chain reaction (PCR) for copying genes 1986: Leroy Hood invents a way to automate gene sequencing 1986: Mario Capecchi performs gene editing on a mouse 1990: William French Anderson’s gene therapy 1990: First baby born via PGD (Alan Handyside’s lab) 5 A brief History of Biotech 1994: FlavrSavr Tomato 1994: Maria Jasin’s homing endonucleases for genome editing 1996: Srinivasan Chandrasegaran’s ZFN method for genome editing 1996: Ian Wilmut clones the first mammal, the sheep Dolly 1997: Dennis Lo detects fetal DNA in the mother’s blood 2000: George Davey Smith introduces Mendelian randomization 6 A brief History of Biotech -
An Incomplete Bibliography of Publications in Historia Scientiarum (International Journal of the History of Science Society of Japan)
An Incomplete Bibliography of Publications in Historia Scientiarum (International Journal of the History of Science Society of Japan) Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 27 December 2018 Version 1.03 Title word cross-reference $124.00 [Hij90]. $29.00 [Bur93a]. 3[+]1=8 [Hol03]. $49.95 [Yaj07]. 7 × 7 e `eme ieme th [Yam10]. 9 [Mur94]. [Gui86, Pen04, Yos81a]. [DP88].P [Ano94b]. ≈ n 2 2 [Pen04]. π [HKY89, Nak94a, Vol94]. π 3(1=8) [Mur92b]. i=1 xi = x [Ras94a]. × [Har87b]. 0 [Hig01a, Izu05, Miu03, Mor04b, Sat05, She06a, She06b]. 0-19-860665-6 [Sat05]. 0-19-927016-3 [Izu05]. 0-520-24607-1 [Yaj07]. 0-691-11445-5 [She06b]. 0-8018-8235-4 [She06a]. 0-86078-668-4 [Hig01a]. 000 [Sas81b]. 00FF [Yos82]. 02/06/2000 [Has01]. 1 [Kaw93a, Oka98, Yos98]. 10 [Høy03, Yos81c]. 10th [Suz81]. 11 [Hay94]. 12/02/1906 [Has01]. 1475/76 [Hig01b]. 1500 [Ito83]. 15073 [Mur05b]. 1 2 16th [Maa91]. 17 [Sat86, Sat87]. 1700 [Nak83]. 17th [Maa91, Oh14, Yin13]. 18.5cm [Har87b]. 1843 [Ito16]. 1847 [Nak00a]. 1847/48 [Nak00a]. 1880s [Kim08a]. 18th [Ano94b, Kaw11, Kob02, Lor86, Nag80, Oh14, Nak98, THI17]. 18th-century [Kob02]. 19 [Nis92]. 190F [Yos98]. 1920s [Bro07, Kan13, Kim08b]. 1930 [Yaj07]. 1930s [Bro89, Kan13]. 1940 [Fur97]. 1940s [Mat98, YW05]. 1950s [HR15, Yam09]. 1955 [Nis92]. 1960s [FH12]. -
RNA-Based Reprogramming
RESEARCH HIGHLIGHTS STEM CELLS RNA-based reprogramming RNA molecules can both induce pluripo- RNA-based technique instead of viral tech- development, began producing myotubes. In tency and direct differentiation. niques for much of its induced pluripotent fact, Rossi expects that techniques using RNA The ability to make person-specific pluri- stem cell production. for differentiation will probably be adopted potent stem cells opens up many possibilities Getting the technique to work required more quickly than using RNA for reprogram- for research tools and perhaps even therapies. a lot of trial and error, says Rossi. His first ming. “I think people will have an easier time But most reprogramming techniques alter cells’ attempts to reprogram cells with RNA failed in differentiation because it’s often one factor genomes, making cells less predictable and more because cells responded as if they had been rather than several,” he says. prone to cancer-like growth. Methods to repro- infected by a virus, committing apoptosis or Making the modified RNA itself is easy, gram cells without changing their genomes launching other antiviral defenses. Swapping says Rossi, but researchers will need to exist but are inefficient and labor-intensive; out two nucleosides with similar analogs mit- spend some time tinkering to find the best most also rely on DNA and so still carry the igated the response and allowed the research- conditions for their systems. Every aspect risk of unintended genetic alterations. ers to reprogram cultured human cells by of culture conditions affects how cells are A reprogramming technique recently applying daily doses of RNAs coding for four transfected with RNA, he says. -
Empire State Stem Cell Board Full Board Committee Meeting Minutes December 17, 2010
Empire State Stem Cell Board Full Board Committee Meeting Minutes December 17, 2010 The Empire State Stem Cell Board held a meeting on Friday, December 17, 2010, at the offices of the Department of Health, 90 Church Street, New York, New York. Dr. David C. Hohn, M.D., presided as Vice Chair. Funding Committee Members Present: Dr. David Hohn, Chairperson Mr. Kenneth Adams Mr. Robin Elliott Dr. Bradford Berk* Dr. Mario Loomis * via videoconference Ms. Madelyn Wils Funding Committee Members Absent: Dr. Richard Daines Dr. Allen Spiegel Dr. Gerald Fischbach Dr. Michael Stocker Dr. Hilda Hutcherson Ethics Committee Members Present: Ms. Jann Armantrout Dr. Vivian Lee Fr. Thomas Berg Rev. H. Hugh Maynard-Reid Ms. Brooke Ellison* Dr. Samuel Packer Dr. Samuel Gorovitz Mr. Robert Swidler Dr. Robert Klitzman *via videoconference Ethics Committee Members Absent: Ms. Nancy Dubler Department of Health Staff Present: Dr. David Anders Ms. Susie Han Mr. Andrew Bentley Dr. Matthew Kohn Ms. Bonnie Brautigam Ms. Beth Roxland Dr. Kathy Chou Ms. Lakia Rucker Ms. Janet Cohn Dr. Lawrence Sturman Presenter: Dr. Derrick Rossi Observers Present: Ms. Jennifer Becht Ms. Caroline Marshall Mr. Joe Feldman Mr. David McKeon Mr. Mike Jolin Ms. Valeria Vavassori-Chen Ms. Elizabeth Misa Welcome and Introductions Dr. Hohn called the meeting to order and welcomed Board members, staff, and the public. He introduced Ms. Jann Armantrout, the newest member of the Ethics Committee. Dr. Hohn then asked members and staff to introduce themselves and provide their title and affiliation. Dr. Hohn stated that during the lunch break, several members had approached him to request special recognition of Dr. -
Setsuro Tamaru and Fritz Haber: Links Between Japan and Germany In
Essay DOI: 10.1002/tcr.201402086 Setsuro Tamaru and Fritz Haber: Links THE CHEMICAL between Japan and Germany in Science RECORD and Technology Hideko Tamaru Oyama Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501 (Japan), Tel./Fax: (+81) 3-3985-2363, E-mail: [email protected] ABSTRACT: Setsuro Tamaru was my grandfather. He worked with Fritz Haber in Germany on researching the ammonia synthesis process and contributed substantially to the development of scientific research and education in Japan. Although I had never met him, I felt his existence while I grew up, since our house was built by him and had many artifacts brought back from Germany by my grandfather; e.g., a Bechstein upright piano upon which I practiced piano every day and Fritz Haber’s portrait with his handwritten message hung on the wall. This is an account of my grandfather’s life, concentrating on his relationship with Fritz Haber. This story goes back to a time more than a century ago. 1. Early Years in Japan (1879∼1908) Setsuro Tamaru (1879∼1944), shown in Figure 1, was born on November 1, 1879, in Morioka, a region in the northern part of the main island, Honshu, Japan. He was the fourth son of a former clansman of the Nambu clan, Juro (father, 1848∼1892), and Shin (mother, 1850∼1941). His father died when he was 12 years old so his eldest brother, Kinya,[1] sup- ported the big family (his mother, grandmother Koto, and six siblings)[2] by working as a schoolteacher. -
BCRP Brochure 2021 Class
Boston Combined Residency Program This brochure describes the residency program as we assume it will -19 exist will in be JulyThe 2021, Pediatric by which time Residency authorities Training Program predict a vaccine to COVID of available. If thatBoston is not the Children’s case and the Hospital pandemic is still active, the program Harvard Medical School will be very similar but many of the and educational conferences and other group activities Bostonwill be virtual Medical instead Center Boston University School of Medicine of in-person, as they are today. August 2020 edi,on CLASS OF 2021.. BOSTON COMBINED RESIDENCY PROGRAM Boston Medical Center Boston Children’s Hospital CONTENTS History…………........................... 3 Rotation # descriptions.................. 47# Global health fellowships............ 84# BCRP…........................................ 3# Night call................................... 53# Global health grants………….… 84 # Boston Children’s Hospital........... 3# Longitudinal ambulatory.............. 54# Diversity and Inclusion................. 84# Boston Medical Center................. 8# Electives………………………….. 55# Salaries and benefits.................... 87# People……................................... 11 Individualized curriculum............ 56# Child care................................... 88# Program director biosketches...... 11# Academic development block.. 56# O$ce of fellowship training....... 88# Residency program leadership..... 12# Education.................................... 57# Cost of living.............................. -
Newsletter, November 2017
ISSN 1756-168X (Print) ISSN 2516-3353 (Online) Newsletter No. 35 November 2017 Published by the History of Physics Group of the Institute of Physics (UK & Ireland) ISSN 1756-168X IOP History of Physics Newsletter November 2017 Contents Editorial 2 Meeting Reports Chairman’s Report 3 Rutherford’s chemists - abstracts 5 ‘60 Years on from ZETA’ by Chris Warrick 10 Letters to the editor 13 Obituary John W Warren by Stuart Leadstone 15 Features Anti-matter or anti-substance? by John W Warren 16 A Laboratory in the Clouds - Horace-Bénédict de Saussure by Peter Tyson 18 On Prof. W.H.Bragg’s December 1914 Letter to the Vice- Chancellor of the University of Leeds by Chris Hammond 34 Book Reviews Crystal Clear - Autobiographies of Sir Lawrence and Lady Bragg by Peter Ford 54 Forthcoming Meetings 69 Committee and contacts 70 61 2 Editorial A big ‘Thank you’! Around 45 people attended the Bristol meeting on the History of Particle Colliders, in April. It was a joint meeting between the History of Physics Group, the High Energy Physics Group, and the Particle Accelerators and Beams Group. With a joint membership of around 2000, that works out at well under 3% - and that was a good turnout. The Rutherford’s Chemists meeting held in Glasgow attracted probably a similar percentage - not very high you might think. But time and travel costs to attend come at a premium so any means by which the content of our meetings may be promulgated - reports in our newsletter and in those of the other groups - is a very worthwhile task. -
2012 Peace Proposal
2012 Peace Proposal Human Security and Sustainability: Sharing Reverence for the Dignity of Life by Daisaku Ikeda President, Soka Gakkai International January 26, 2012 Motivated by the quest for a global society of peace and coexistence, I have, every year since 1983, issued a peace proposal commemorating January 26, the day that the Soka Gakkai International (SGI) was founded in 1975. The present proposal will thus be the thirtieth such proposal. The members of the SGI throughout the world are committed to the work of constructing--through a movement for peace, education and culture--a global society in which the dignity of each person shines and all people can live in security. The spiritual foundations for this effort are found in the philosophy of Buddhism which reverences the inherent value and dignity of life. Specifically, we are inspired by the fervent desire expressed by second Soka Gakkai president Josei Toda (1900-58): "I wish to see the word 'misery' no longer used to describe the world, any country, any individual." [1] Sadly, the planet continues to be wracked by violent conflict and civil unrest; people around the world face unacceptable threats to their lives and dignity in the form of poverty, hunger and environmental destruction, while the suffering caused by human rights violations and discrimination remains widespread. Further, there has been the wrenching spectacle of natural disasters that instantly rob people of their lives, disrupting and undermining the foundations of entire societies. Recent years have seen a series of major natural disasters, from the Indian Ocean earthquake and tsunami in 2004 to the massive earthquake in Haiti in 2010, exacting a horrific toll in human life. -
Moderna Therapeutics Has Big Ambitions and a Bankroll to Match
NEWS FEATURE THE BILLION-DOLLAR BIOTECH Moderna Therapeutics has big ambitions and a bankroll to match. How a fledgling start-up became one of the most highly valued private drug firms ever. BY ELIE DOLGIN t a breakfast meeting two-and-a-half years But Moderna is also something of a mystery. are mostly limited to secreted molecules. An ago, Pascal Soriot, the newly minted chief As a private firm, it has revealed very little of mRNA-based therapy would be able to make executive of pharmaceutical giant Astra- its research. Its academic founders have pub- proteins that operate inside the cell as well. A Zeneca, shook hands on the first major lished only one study1 using Moderna’s mRNA “mRNA delivery would reinvent how we as drug-development deal of his tenure. It was therapeutics technology in rodents. And the an industry tackle many diseases,” says Peter a research partnership with little-known bio- company itself has disclosed scientific details Kolchinsky, managing partner of RA Capital technology company Moderna Therapeutics (including some about early work in non- Management in Boston, Massachusetts, which of Cambridge, Massachusetts. Worth up to human primates) only through patent filings. is one of the latest investors in Moderna. US$420 million, the deal was unusually large Add in questions about the strength of Mod- But delivery is tricky. In the early 1990s, for a start-up that offered only a fledgling drug erna’s patent position and the troubled history scientists first demonstrated that injected technology, especially one that had not yet even of other RNA-based drugs, and some analysts mRNA could generate proteins in mice2 and been tested in humans. -
Waiting-Time Paradox in 1922
Northeast Journal of Complex Systems (NEJCS) Volume 2 Number 1 Article 1 May 2020 Waiting-Time Paradox in 1922 Naoki Masuda University at Buffalo, [email protected] Takayuki Hiraoka Aalto University, [email protected] Follow this and additional works at: https://orb.binghamton.edu/nejcs Part of the Operational Research Commons, Other Physics Commons, and the Other Statistics and Probability Commons Recommended Citation Masuda, Naoki and Hiraoka, Takayuki (2020) "Waiting-Time Paradox in 1922," Northeast Journal of Complex Systems (NEJCS): Vol. 2 : No. 1 , Article 1. DOI: 10.22191/nejcs/vol2/iss1/1 Available at: https://orb.binghamton.edu/nejcs/vol2/iss1/1 This Article is brought to you for free and open access by The Open Repository @ Binghamton (The ORB). It has been accepted for inclusion in Northeast Journal of Complex Systems (NEJCS) by an authorized editor of The Open Repository @ Binghamton (The ORB). For more information, please contact [email protected]. Masuda and Hiraoka: Waiting-Time Paradox in 1922 Waiting-Time Paradox in 1922 Naoki Masuda1;2;∗ and Takayuki Hiraoka3 1Department of Mathematics, University at Buffalo, State University of New York, Buffalo, NY 14260-2900, USA 2Computational and Data-Enabled Science and Engineering Program, University at Buffalo, State University of New York, Buffalo, NY 14260-5030, USA 3Department of Computer Science, Aalto University, Espoo 00076, Finland ∗ Corresponding author ([email protected]) Abstract We present an English translation and discussion of an essay that a Japanese physi- cist, Torahiko Terada, wrote in 1922. In the essay, he described the waiting-time paradox, also called the bus paradox, which is a known mathematical phenomenon in queuing theory, stochastic processes, and modern temporal network analysis. -
Ectopic Expression of RAD52 and Dn53bp1 Improves Homology-Directed Repair During CRISPR–Cas9 Genome Editing
ARTICLES DOI: 10.1038/s41551-017-0145-2 Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR–Cas9 genome editing Bruna S. Paulsen1,2, Pankaj K. Mandal 1,2,3, Richard L. Frock2,4, Baris Boyraz5,6, Rachita Yadav7,8,9, Srigokul Upadhyayula2,3,10, Paula Gutierrez-Martinez 1,2, Wataru Ebina1,2, Anders Fasth11, Tomas Kirchhausen2,3,10, Michael E. Talkowski7,8,9, Suneet Agarwal3,5,12,13, Frederick W. Alt2,4,14 and Derrick J. Rossi1,2,3,13* Gene disruption by clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) is highly efficient and relies on the error-prone non-homologous end-joining pathway. Conversely, precise gene editing requires homology-directed repair (HDR), which occurs at a lower frequency than non-homologous end-joining in mammalian cells. Here, by testing whether manipulation of DNA repair factors improves HDR efficacy, we show that transient ectopic co-expression of RAD52 and a dominant-negative form of tumour protein p53-binding protein 1 (dn53BP1) synergize to enable efficient HDR using a single-stranded oligonucleotide DNA donor template at multiple loci in human cells, including patient-derived induced pluripotent stem cells. Co-expression of RAD52 and dn53BP1 improves multiplexed HDR-mediated editing, whereas expression of RAD52 alone enhances HDR with Cas9 nickase. Our data show that the frequency of non-homologous end-joining-mediated double-strand break repair in the presence of these two factors is not suppressed and suggest that dn53BP1 competitively antagonizes 53BP1 to augment HDR in combination with RAD52. Importantly, co-expression of RAD52 and dn53BP1 does not alter Cas9 off-target activity.