Evolutionary Trends in Viral Pathogens Within and Between Outbreaks

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Trends in Viral Pathogens Within and Between Outbreaks EVOLUTIONARY TRENDS IN VIRAL PATHOGENS WITHIN AND BETWEEN OUTBREAKS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Mary E. Saha December 2017 © Copyright All rights reserved Except for previously published materials Dissertation written by Mary E Saha B.S., University of Akron, 2008 Ph.D., Kent State University, 2017 Approved by _Dr. Helen Piontkivska___________ Chair, Doctoral Dissertation Committee _Dr. Gary Koski_________________ Members, Doctoral Dissertation Committee _Dr. Christopher Woolverton_______ _Dr. Tara Smith_________________ _Dr. Walter Hoeh________________ _Dr. Gail Fraizer_________________ Accepted by __Dr. Laura Leff________________ Chair, Department of Biology __Dr. James Blank_______________ Dean, College of Arts and Sciences Table of Contents LIST OF FIGURES ......................................................................................................... V LIST OF TABLES ........................................................................................................ VII ACKNOWLEDGEMENTS ........................................................................................ VIII CHAPTER 1: INTRODUCTION .................................................................................... 1 1.1 RNA viruses .............................................................................................................. 1 1.2 Influenza A.................................................................................................................... 3 1.3 Challenges in Influenza Sampling ................................................................................ 6 1.4 Ebolavirus ................................................................................................................... 12 1.5 Immune Response against Ebolavirus ........................................................................ 17 1.6 Ebolavirus Outbreaks and Public Health .................................................................... 19 1.7 Ebolavirus Evolutionary Questions ............................................................................ 27 1.8 Research Goals............................................................................................................ 30 1.9 Overview of Subsequent Chapters .............................................................................. 33 1.10 References ................................................................................................................. 35 CHAPTER 2: SAMPLING ISSUES IN INFLUENZA A ANALYSIS: AN APPROACH TO DEALING WITH OVERSAMPLING ............................... 44 2.1 Introduction ............................................................................................................. 44 2.2 Hypotheses .............................................................................................................. 46 2.3 Methods ................................................................................................................... 46 2.4 Results ..................................................................................................................... 50 2.5 Discussion and Conclusions .................................................................................... 62 2.6 References ................................................................................................................... 71 iii CHAPTER 3: GENOME-WIDE MOLECULAR SUBSTITUTION PATTERNS IN EBOLAVIRUS .................................................................................................... 76 3.1 Introduction ............................................................................................................. 76 3.2 Hypothesis ............................................................................................................... 77 3.3 Methods ................................................................................................................... 77 3.4 Results ..................................................................................................................... 80 3.5 Discussion and Conclusions .................................................................................. 105 3.6 References ................................................................................................................. 112 CHAPTER 4: DISTRIBUTION OF POSITIVELY AND NEGATIVELY SELECTED SITES IN THE EBOLAVIRUS GENOME ............................. 115 4.1 Introduction ........................................................................................................... 115 4.2 Hypotheses ............................................................................................................ 116 4.3 Methods ................................................................................................................. 117 4.4 Results ................................................................................................................... 120 4.5 Discussion and Conclusions .................................................................................. 137 4.6 References ................................................................................................................. 146 CHAPTER 5: SUMMARY AND FUTURE DIRECTIONS ..................................... 150 References ....................................................................................................................... 163 APPENDICES ............................................................................................................... 171 Chapter 1 ......................................................................................................................... 171 Chapter 2 ......................................................................................................................... 173 Chapter 3 ......................................................................................................................... 176 Chapter 4 ......................................................................................................................... 199 iv List of Figures Figure 1.1: Synonymous substitution rates in RNA viruses ............................................... 2 Figure 1.2: Percentages of HA Influenza A sequences available for the top ten countries (or territories) in the NCBI Influenza Database (2013). ..................................................... 8 Figure 1.3: The number of publications in PubMed for Influenza A and Ebolavirus by date .................................................................................................................................... 11 Figure 1.4: Infection Progression of Ebolavirus. .............................................................. 14 Figure 1.5: Ebolavirus life cycle and immune system effects .......................................... 17 Figure 1.6: Map of 2014 outbreak with the number of cases ........................................... 22 Figure 1.7: Map of the 2017 outbreak in the Democratic Republic of the Congo (DRC, formerly Zaire) .................................................................................................................. 24 Figure 2.1: Workflow of analysis steps. ........................................................................... 49 Figure 2.2: dN Values by Country and Year: ................................................................... 52 Figure 2.3: dS Values by Country and Year: .................................................................... 53 Figure 2.4: Nucleotide Diversity Values. ........................................................................ 57 Figure 2.5: dN Values. ...................................................................................................... 59 Figure 2.6: dS Values:....................................................................................................... 61 Figure 2.7: dN/dS values by number of sequences used and color coded by the source article................................................................................................................................. 69 Figure 3.1: Phylogenetic Tree of Ebolavirus Sequences .................................................. 89 Figure 3.2: Phylogenetic pairs mean dN. .......................................................................... 90 v Figure 3.3: Phylogenetic pairs mean dS. .......................................................................... 92 Figure 3.4: GP Between Pairs dN. .................................................................................... 94 Figure 3.5: GP Within Pairs dN. ....................................................................................... 96 Figure 3.6: Phylogenetic pairs within group values.......................................................... 98 Figure 3.7: 2014 outbreak dN-dS values for within phylogenetic pair comparisons. ... 100 Figure 3.8: Other outbreak dN-dS values for within phylogenetic pair comparisons. ... 102 Figure 3.9: GP 50% epitope dN-dS. ............................................................................... 104 Figure 4.1: Epitope Regions and Polymorphic Sites in Three Ebolavirus Genes .......... 121 Figure 4.2: Epitope Regions and Polymorphic Sites in Three Ebolavirus Genes .......... 123 Figure 4.3: Epitope Regions and Polymorphic Sites in Three Ebolavirus Genes .......... 125 Figure 4.4: Protein Structures and Polymorphic Sites in Six Ebolavirus
Recommended publications
  • How Influenza Virus Uses Host Cell Pathways During Uncoating
    cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3].
    [Show full text]
  • Ebola Virus VP40 Real-Time RT-PCR Assay for Use Under an Emergency Use Authorization Only
    Ebola Virus VP40 Real-Time RT-PCR Assay Centers for Disease Control and Prevention For Use Under an Emergency Use Authorization Only Instructions for Use January 2016 Page 0 of 50 Table of Contents Introduction .................................................................................................................................... 2 Specimens ....................................................................................................................................... 3 Equipment and Consumables ........................................................................................................ 3 Quality Control ............................................................................................................................... 5 Nucleic Acid Extraction ................................................................................................................. 7 Testing Algorithm .......................................................................................................................... 8 rRT-PCR Assay .............................................................................................................................. 9 Interpreting Test Results .............................................................................................................. 14 Overall Test Interpretation and Reporting Instructions ............................................................. 18 Assay Limitations, Warnings and Precautions ..........................................................................
    [Show full text]
  • Ebolaviruses: New Roles for Old Proteins
    REVIEW Ebolaviruses: New roles for old proteins Diego Cantoni, Jeremy S. Rossman* School of Biosciences, University of Kent, Canterbury, United Kingdom * [email protected] Abstract In 2014, the world witnessed the largest Ebolavirus outbreak in recorded history. The subse- quent humanitarian effort spurred extensive research, significantly enhancing our under- standing of ebolavirus replication and pathogenicity. The main functions of each ebolavirus protein have been studied extensively since the discovery of the virus in 1976; however, the recent expansion of ebolavirus research has led to the discovery of new protein functions. a1111111111 These newly discovered roles are revealing new mechanisms of virus replication and patho- a1111111111 genicity, whilst enhancing our understanding of the broad functions of each ebolavirus viral a1111111111 a1111111111 protein (VP). Many of these new functions appear to be unrelated to the protein's primary a1111111111 function during virus replication. Such new functions range from bystander T-lymphocyte death caused by VP40-secreted exosomes to new roles for VP24 in viral particle formation. This review highlights the newly discovered roles of ebolavirus proteins in order to provide a more encompassing view of ebolavirus replication and pathogenicity. OPEN ACCESS Citation: Cantoni D, Rossman JS (2018) Ebolaviruses: New roles for old proteins. PLoS Negl Trop Dis 12(5): e0006349. https://doi.org/ Author summary 10.1371/journal.pntd.0006349 Between 2014 and 2016, West Africa experienced the largest Ebolavirus outbreak in Editor: Patricia V. Aguilar, University of Texas recorded history. The international containment effort spurred extensive research that is Medical Branch, UNITED STATES enhancing our understanding of ebolavirus replication and pathogenicity.
    [Show full text]
  • WHO Expert Committee on Biological Standardization: Sixty-Eighth Report (WHO Technical Report Series, No
    This report presents the recommendations of a WHO Expert Committee commissioned to coordinate activities leading to the 1011 adoption of international recommendations for the production WHO Technical Report Series and control of vaccines and other biological substances, and the establishment of international biological reference materials. 1011 Following a brief introduction, the report summarizes a number WHO of general issues brought to the attention of the Committee. The next part of the report, of particular relevance to manufacturers Expert on Biological Standardization Committee and national regulatory authorities, outlines the discussions held on the development and adoption of new and revised WHO Recommendations, Guidelines and guidance documents. Following these discussions, WHO Guidelines on the quality, safety and efficacy of Ebola vaccines, and WHO Guidelines on procedures and data requirements for changes to approved biotherapeutic products were adopted on the recommendation of the Committee. In addition, the following two WHO guidance documents on the WHO prequalification of in vitro diagnostic medical devices were also adopted: (a) Technical Specifications Series (TSS) for WHO Prequalification – WHO Expert Committee Diagnostic Assessment: Human immunodeficiency virus (HIV) rapid diagnostic tests for professional use and/or self- on Biological testing; and (b) Technical Guidance Series (TGS) for WHO Prequalification – Diagnostic Assessment: Establishing stability of in vitro diagnostic medical devices. Standardization Subsequent
    [Show full text]
  • Virus-Host Interaction: the Multifaceted Roles of Ifitms And
    Virus-Host Interaction: The Multifaceted Roles of IFITMs and LY6E in HIV Infection DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jingyou Yu Graduate Program in Comparative and Veterinary Medicine The Ohio State University 2018 Dissertation Committee: Shan-Lu Liu, MD, PhD, Advisor Patrick L. Green, PhD Jianrong Li, DVM., PhD Jesse J. Kwiek, PhD Copyrighted by Jingyou Yu 2018 Abstract With over 1.8 million newly infected people each year, the worldwide HIV-1 epidemic remains an imperative challenge for public health. Recent work has demonstrated that type I interferons (IFNs) efficiently suppress HIV infection through induction of hundreds of interferon stimulated genes (ISGs). These ISGs target distinct infection stages of invading pathogens and shape innate immunity. Among these, interferon induced transmembrane proteins (IFITMs) and lymphocyte antigen 6 complex, locus E (LY6E) have been shown to differentially modulate viral infections. However, their effects on HIV are not fully understood. In my thesis work, I provided evidence in Chapter 2 showing that IFITM proteins, particularly IFITM2 and IFITM3, specifically antagonize the HIV-1 envelope glycoprotein (Env), thereby inhibiting viral infection. IFITM proteins interacted with HIV-1 Env in viral producer cells, leading to impaired Env processing and virion incorporation. Notably, the level of IFITM incorporation into HIV-1 virions did not strictly correlate with the extent of inhibition. Prolonged passage of HIV-1 in IFITM-expressing T lymphocytes led to emergence of Env mutants that overcome IFITM restriction. The ability of IFITMs to inhibit cell-to-cell infection can be extended to HIV-1 primary isolates, HIV-2 and SIVs; however, the extent of inhibition appeared to be virus- strain dependent.
    [Show full text]
  • A Novel Ebola Virus VP40 Matrix Protein-Based Screening for Identification of Novel Candidate Medical Countermeasures
    viruses Communication A Novel Ebola Virus VP40 Matrix Protein-Based Screening for Identification of Novel Candidate Medical Countermeasures Ryan P. Bennett 1,† , Courtney L. Finch 2,† , Elena N. Postnikova 2 , Ryan A. Stewart 1, Yingyun Cai 2 , Shuiqing Yu 2 , Janie Liang 2, Julie Dyall 2 , Jason D. Salter 1 , Harold C. Smith 1,* and Jens H. Kuhn 2,* 1 OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; [email protected] (R.P.B.); [email protected] (R.A.S.); [email protected] (J.D.S.) 2 NIH/NIAID/DCR/Integrated Research Facility at Fort Detrick (IRF-Frederick), Frederick, MD 21702, USA; courtney.fi[email protected] (C.L.F.); [email protected] (E.N.P.); [email protected] (Y.C.); [email protected] (S.Y.); [email protected] (J.L.); [email protected] (J.D.) * Correspondence: [email protected] (H.C.S.); [email protected] (J.H.K.); Tel.: +1-585-697-4351 (H.C.S.); +1-301-631-7245 (J.H.K.) † These authors contributed equally to this work. Abstract: Filoviruses, such as Ebola virus and Marburg virus, are of significant human health concern. From 2013 to 2016, Ebola virus caused 11,323 fatalities in Western Africa. Since 2018, two Ebola virus disease outbreaks in the Democratic Republic of the Congo resulted in 2354 fatalities. Although there is progress in medical countermeasure (MCM) development (in particular, vaccines and antibody- based therapeutics), the need for efficacious small-molecule therapeutics remains unmet. Here we describe a novel high-throughput screening assay to identify inhibitors of Ebola virus VP40 matrix protein association with viral particle assembly sites on the interior of the host cell plasma membrane.
    [Show full text]
  • Eesha Acharya Project #1
    Eesha Acharya Project #1 Completed Project, Science, Health and Medical Measuring Vitamin C Levels in Cooked Foods Most people know that raw foods contain the most nutrients. However, many people prefer eating cooked foods. the problem is vitamin C is a water-soluble vitamin, so when foods are cooked they lose a lot of this essential nutrient. The purpose of this research is to determine which cooking method best retains the most vitamin C in vegetables. The raw vegetable vitamin C information will be compared to that of other cooking methods (grilling, boiling, and steaming) of that same vegetable. tomatoes, brussel sprouts, kale, bell peppers, broccoli, peas, and a tincture of iodine solution, 2-7% elemental iodine, will be used to test the vitamin C content. The food will be tested by mixing 10g of food to a starch-water mixture and straining the water. Drops of iodine will be added to the strained water until the solution turns black. The more iodine added, means the more vitamin C is in the food. Then the number of drops will be divided by 10g of food. This gives the drops per gram of food. This number will be multiplied by the factor. The drops per gram multiplied by the factor equals mg of vitamin C per gram of food This study is designed to help people consume more vitamin C. Many people in the United States have a vitamin C deficiency. Vitamin C is a key that prevents immune system deficiency and cardiovascular disease. So if a proper cooking method can be found, then people can consume more Vitamin C.
    [Show full text]
  • Defining the Multiplicity and Type of Infection for the Production of Zaire Ebola Virus-Like Particles in the Insect Cell Baculovirus Expression System
    DEFINING THE MULTIPLICITY AND TYPE OF INFECTION FOR THE PRODUCTION OF ZAIRE EBOLA VIRUS-LIKE PARTICLES IN THE INSECT CELL BACULOVIRUS EXPRESSION SYSTEM Ana Ruth Pastor, Instituto de Biotecnología, Universidad Nacional Autónoma de México Av. Universidad 2001 Col. Chamilpa, México [email protected] Gonzalo González-Domínguez, Instituto de Biotecnología. Universidad Nacional Autónoma de México Carlos F. Arias, Instituto de Biotecnología. Universidad Nacional Autónoma de México Alejandro Alagón, Instituto de Biotecnología. Universidad Nacional Autónoma de México Octavio T. Ramírez, Instituto de Biotecnología. Universidad Nacional Autónoma de México Laura A. Palomares, Instituto de Biotecnología. Universidad Nacional Autónoma de México Key Words: Ebola virus, ZEBOV-VLP’s, coinfection, hemorrhagic fever, immunogenic response. Ebola virus hemorrhagic fever affects thousands of people worldwide with high mortality rates. The Ebola virus has a short incubation time between 2-21 days and death usually occurs within 4-10 days1. Ebola virus disease is characterized by a sudden onset of fever, weakness, headache, diarrhea and vomiting, internal and external bleeding2. In the Filovirus family, Zaire Ebola virus (ZEBOV) is the most aggressive and virulent species, its fatality rates have been reported to be up to 90%3. Even when important advances in vaccine development have occurred, the need of safe and effective vaccines persists4. An alternative is the production of virus-like particles, which are formed by the recombinant virus structural proteins that self-assemble into highly immunogenic structures5. The ZEBOV contains three main structural proteins: the glycoprotein (GP), the viral matrix protein 40 (VP40) and the nucleoprotein (NP). GP induces humoral and cellular responses by itself but when VP40 is co-expressed, the immune response increases in a mouse model6.
    [Show full text]
  • Downloads/ Hsp90interactors.Pdf), and Tend to Be Metastable, Being Rapidly Degraded Upon Hsp90 Inhibition
    viruses Review Chaperoning the Mononegavirales: Current Knowledge and Future Directions Victor Latorre †, Florian Mattenberger † and Ron Geller * Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46980 Valencia, Spain; [email protected] (V.L.); [email protected] (F.M.) * Correspondence: [email protected]; Tel.: +34-963-543-187 † These authors contributed equally to this work. Received: 16 November 2018; Accepted: 5 December 2018; Published: 8 December 2018 Abstract: The order Mononegavirales harbors numerous viruses of significant relevance to human health, including both established and emerging infections. Currently, vaccines are only available for a small subset of these viruses, and antiviral therapies remain limited. Being obligate cellular parasites, viruses must utilize the cellular machinery for their replication and spread. Therefore, targeting cellular pathways used by viruses can provide novel therapeutic approaches. One of the key challenges confronted by both hosts and viruses alike is the successful folding and maturation of proteins. In cells, this task is faced by cellular molecular chaperones, a group of conserved and abundant proteins that oversee protein folding and help maintain protein homeostasis. In this review, we summarize the current knowledge of how the Mononegavirales interact with cellular chaperones, highlight key gaps in our knowledge, and discuss the potential of chaperone inhibitors as antivirals. Keywords: Mononegavirales; chaperones; antivirals; Hsp70;
    [Show full text]
  • Structural Rearrangement of Ebola Virus VP40 Begets Multiple Functions in the Virus Life Cycle
    Structural Rearrangement of Ebola Virus VP40 Begets Multiple Functions in the Virus Life Cycle Zachary A. Bornholdt,1 Takeshi Noda,4 Dafna M. Abelson,1 Peter Halfmann,6 Malcolm R. Wood,2 Yoshihiro Kawaoka,4,5,6,7 and Erica Ollmann Saphire1,3,* 1Department of Immunology and Microbial Science 2Core Microscopy Facility 3The Skaggs Institute for Chemical Biology The Scripps Research Institute, La Jolla, CA 92037, USA 4Division of Virology, Department of Microbiology and Immunology 5International Research Center for Infectious Diseases Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan 6Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA 7Infection-Induced Host Responses Project, Exploratory Research for Advanced Technology, Saitama 332-0012, Japan *Correspondence: [email protected] http://dx.doi.org/10.1016/j.cell.2013.07.015 SUMMARY (Kuhn, 2008). Ebolaviruses assemble and bud from the cell membrane in a process driven by the viral matrix protein VP40 Proteins, particularly viral proteins, can be multifunc- (Harty et al., 2000; Panchal et al., 2003). VP40 alone is sufficient tional, but the mechanisms behind multifunctionality to assemble and bud filamentous virus-like particles (VLPs) from are not fully understood. Here, we illustrate through cells (Geisbert and Jahrling, 1995; Johnson et al., 2006; Noda multiple crystal structures, biochemistry, and cellular et al., 2002). microscopy that VP40 rearranges into different struc- The first crystal structure of VP40 suggested that this protein is tures, each with a distinct function required for the monomeric (Dessen et al., 2000a, 2000b). The structure revealed that VP40 contains distinct N- and C-terminal domains (NTDs ebolavirus life cycle.
    [Show full text]
  • Structure of the Cleavage-Activated Prefusion Form of the Parainfluenza Virus 5 Fusion Protein
    Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein Brett D. Welcha,b,1, Yuanyuan Liua,b,1, Christopher A. Korsa,b, George P. Lesera,b, Theodore S. Jardetzkyc,2, and Robert A. Lamba,b,2 aHoward Hughes Medical Institute and bDepartment of Molecular Biosciences, Northwestern University, Evanston, IL 60208; and cDepartment of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Robert A. Lamb, August 9, 2012 (sent for review June 28, 2012) The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by refolding, resulting in formation of a trimeric coiled coil com- fusion of the viral envelope with the plasma membrane through posed of a heptad repeat A region that extends away from the the concerted action of the fusion (F) protein and the receptor viral membrane (18–20). binding protein hemagglutinin-neuraminidase. The F protein folds Peptide inhibitor studies and available atomic structures in- initially to form a trimeric metastable prefusion form that is trig- dicate that many of the key elements of this entry mechanism are gered to undergo large-scale irreversible conformational changes common to other class I viral fusion proteins, such as the hem- to form the trimeric postfusion conformation. It is thought that agglutinin (HA) of influenza virus, gp120/41 of HIV, S protein of F refolding couples the energy released with membrane fusion. severe acute respiratory syndrome coronavirus, and glycoprotein The F protein is synthesized as a precursor (F0) that must be (GP) of Ebola virus (reviewed in ref. 4). Although X-ray struc- cleaved by a host protease to form a biologically active molecule, tures of the six-helix bundle of many type I fusion proteins have F1,F2.
    [Show full text]
  • Hydroxychloroquine Prophylaxis and Treatment Is Ineffective in Macaque and Hamster SARS-Cov-2 Disease Models
    Hydroxychloroquine prophylaxis and treatment is ineffective in macaque and hamster SARS-CoV-2 disease models Kyle Rosenke, … , Emmie de Wit, Heinz Feldmann JCI Insight. 2020. https://doi.org/10.1172/jci.insight.143174. Research In-Press Preview COVID-19 Therapeutics Graphical abstract Find the latest version: https://jci.me/143174/pdf 1 Title: Hydroxychloroquine Prophylaxis and Treatment is Ineffective in Macaque and Hamster 2 SARS-CoV-2 Disease Models 3 4 Authors: Kyle Rosenke,1† Michael. A. Jarvis,2† Friederike Feldmann,3† BenJamin. Schwarz,4 5 Atsushi Okumura,1 JamieLovaglio,3 Greg Saturday,3 Patrick W. Hanley,3 Kimberly Meade- 6 White,1 Brandi N. Williamson,1 Frederick Hansen,1 Lizette Perez-Perez,1 Shanna Leventhal,1 7 Tsing-Lee Tang-Huau,1 Julie Callison,1 Elaine Haddock.1 Kaitlin A. Stromberg,4 Dana Scott,3 8 Graham Sewell,5 Catharine M. Bosio,4 David Hawman,1 Emmie de Wit,1 Heinz Feldmann1* 9 †These authors contributed equally 10 11 Affiliations: 1Laboratory of Virology, 3Rocky Mountain Veterinary Branch and 4Laboratory of 12 Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious 13 Diseases, National Institutes of Health, Hamilton, MT, USA; 14 2University of Plymouth; and The Vaccine Group Ltd, Plymouth, Devon, UK; 15 5The Leicester School of Pharmacy, De Montfort University, Leicester, UK 16 17 *Corresponding author: Heinz Feldmann, Rocky Mountain Laboratories, 903 S 4th Street, 18 Hamilton, MT, US-59840; Tel: (406)-375-7410; Email: [email protected] 19 20 Conflict of Interest Statement: The authors have declared that no conflict of interest exists. 21 22 ABSTRACT 23 We remain largely without effective prophylactic/therapeutic interventions for COVID-19.
    [Show full text]