Virus-Host Interaction: the Multifaceted Roles of Ifitms And

Total Page:16

File Type:pdf, Size:1020Kb

Virus-Host Interaction: the Multifaceted Roles of Ifitms And Virus-Host Interaction: The Multifaceted Roles of IFITMs and LY6E in HIV Infection DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jingyou Yu Graduate Program in Comparative and Veterinary Medicine The Ohio State University 2018 Dissertation Committee: Shan-Lu Liu, MD, PhD, Advisor Patrick L. Green, PhD Jianrong Li, DVM., PhD Jesse J. Kwiek, PhD Copyrighted by Jingyou Yu 2018 Abstract With over 1.8 million newly infected people each year, the worldwide HIV-1 epidemic remains an imperative challenge for public health. Recent work has demonstrated that type I interferons (IFNs) efficiently suppress HIV infection through induction of hundreds of interferon stimulated genes (ISGs). These ISGs target distinct infection stages of invading pathogens and shape innate immunity. Among these, interferon induced transmembrane proteins (IFITMs) and lymphocyte antigen 6 complex, locus E (LY6E) have been shown to differentially modulate viral infections. However, their effects on HIV are not fully understood. In my thesis work, I provided evidence in Chapter 2 showing that IFITM proteins, particularly IFITM2 and IFITM3, specifically antagonize the HIV-1 envelope glycoprotein (Env), thereby inhibiting viral infection. IFITM proteins interacted with HIV-1 Env in viral producer cells, leading to impaired Env processing and virion incorporation. Notably, the level of IFITM incorporation into HIV-1 virions did not strictly correlate with the extent of inhibition. Prolonged passage of HIV-1 in IFITM-expressing T lymphocytes led to emergence of Env mutants that overcome IFITM restriction. The ability of IFITMs to inhibit cell-to-cell infection can be extended to HIV-1 primary isolates, HIV-2 and SIVs; however, the extent of inhibition appeared to be virus- strain dependent. Overall, this study uncovers a mechanism by which IFITM proteins specifically antagonize HIV-1 Env to restrict HIV-1 infection and provides insight into the specialized role of IFITMs in HIV infection. In Chapter three of this dissertation, I examined the effects of IFITMs on HIV-1 with different co-receptor tropism. I demonstrated that overexpression of IFITMs more dramatically suppressed ii entry of X4 (NL4.3 and HXB2) and dual tropic (89.6) viruses compared to their effect on R5 (JRFL and AD8) viruses, regardless of cell types. However, in all cases, the inhibition potency was ranked as IFITM3>IFITM2>IFITM1. Loss of function study revealed that knockdown IFITMs with short hairpin RNAs had modest effects on IFN-mediated viral entry compared to multi-round HIV-1 replication. Overall, this work suggests that IFITM proteins do not distinguish co-receptors CCR5 and CXCR4 to inhibit HIV-1 entry and that IFN-induced IFITMs mainly act in virus-producing cell to restrict HIV-1 replication. In Chapter four of this dissertation, I showed that LY6E promotes HIV-1 infection by enhancing viral entry and gene expression. Specifically, knockdown of LY6E in human PBMCs, SupT1, and THP-1 cells diminished HIV-1 replication. Virion-cell and cell-cell fusion experiments revealed that LY6E promotes membrane fusion of the viral entry step. Interestingly, I found that the LTR-driven HIV-1 gene expression was also enhanced by LY6E, suggesting additional roles of LY6E in HIV-1 replication. HIV-1 infection induced LY6E expression in human PBMCs, concomitant with increased production of type I IFN and some classical IFN-stimulated genes (ISGs). Altogether, these results demonstrate that IFN-inducible LY6E promotes HIV-1 entry and replication, highlighting a positive regulatory role of IFN-induced proteins in HIV-1 infection. In Chapter five of this dissertation, I showed that LY6E showed a distinct phenotype in low- CD4-expresisng Jurkat cells, i.e., LY6E inhibits HIV-1 entry by downregulating CD4. LY6E was found to be co-localized with CD4 on plasma membranes and further down-modulated CD4 on cell surface; this leads to compromised viral binding and subsequent viral entry. Ectopic expression of CD4 was able to rescue the phenotype of LY6E in Jurkat cells. The CD4 dependent inhibitory phenotype of LY6E can be recapitulated in low-CD4 primary cells human Monocyte- derived macrophages (MDMs). Taken together, this study reveals that LY6E likely modulates iii HIV-1 infection in a cell type dependent manner, and the CD4 surface expression level determines the sensitivity of HIV to LY6E. Overall, in this thesis work, I have investigated the role of IFITMs and LY6E in HIV-1 infection and discovered some multifaceted functions of these two families of proteins in modulating the different stages of the viral life cycle. My data highlight the more complex functions of type I IFNs and ISGs in HIV infection and AIDS pathogenesis. Information obtained in this thesis provides insights into understanding of the modes of action of type I IFNs and virus- host interaction in general, and could have therapeutic implications for prevention and treatment of HIV/AIDS. iv Dedication To my beloved parents Mr. Zhijia Yu and Mrs. Xuehua Tian, And my wonderful wife Mrs. Yawen Ni, Without whom none of my success would be achievable v Acknowledgements I would like to express my sincere gratitude to my advisor, Dr. Shan-Lu Liu, who had offered me such a great opportunity to work in his lab, to be educated in a land of freedom and democracy, and more importantly, in a kingdom of real and beautiful science. His hardworking, enthusiasm, and extraordinary insights into sciences have exerted profound influences on me and will be cherished for the rest of my life. I will never forget times that he sacrificed his nights and weekends to revise my presentation slides, manuscripts, and project outlines. His words “If you do not try, you will never know” will always inspire me along my scientific career. I would like to thank my committee members, Drs. Patrick Green, Jianrong Li, and Jesse Kwiek, whose knowledge in virology and sciences have broadened my perspectives and fostered my critical thinking. I truly appreciate their valuable advice on my candidacy exams and projects overall, as well as their flexibility for coordination of my committee meetings and dissertation defense. I would also wish to extend to my gratitude to Drs. A. Dusty Miller, Chen Liang, Jianrong Li, and Li Wu, whom I have collaborated with during my PhD training in Dr. Liu’s lab, some of which are not included due to space limitation. I would like to thank all members of the Liu lab, both present and past. Dr. Yi-Min Zheng has amazed me for her expertise in both science and cooking. Her words “Those who are good at experiments ought to have a clever hand in cooking” indeed make a lot of sense to me. So many times, have she and Dr. Liu invited the lab members to their house to celebrate holidays and events, which are among the happiest hours for all of us. Dr. Minghua Li was assigned to train my experimental techniques since I joined in the Dr. Liu’s lab. I learned a lot from him, not only on how to conduct the bench work but also the sincere attitude of how to do careful experiments. Dr. Chunhui Miao had helped me to survive a few homeless days when I first arrived at Columbia, vi Missouri - the popular and classic inspirational songs in his car are always unforgettable to me! Many thanks to Drs. Fushun Zhang, Jordan Wilkins, Xuetao Bai and Cong Zeng for their thoughtful discussions on my projects and the harmonious and friendly laboratory atmosphere that we all have built. Thank Dr. Wessel Dirksen, Vaibhav Murthy for their help in editing this thesis. Thanks should go to my friends along the way, Qi Yan from Dr. Yasuko Rikihisa’ lab, Anzhong Li from Dr. Jianrong Li’s lab, as well as all members from Drs. Li Wu, Patrick Green and Sanggu Kim’s lab at the Center for Retrovirus Research. Finally, I am indebted to my parents, my parents-in-law and my wife for their continuous support, encouragement and love. In particular, I desire to thank my little son, Noah Yu, for the laughter that he has brought to us and for the incentives that spur me to strive for the next chapter of my life. vii Vita 2005……………………………………………….. No.1 High School of Taoyuan County, Changde, Hunan Province, China 2009……………………………………………….. B.S., Microbiology and Immunology, China Agricultural University, Beijing, China 2009……………………………………………….. B.Admin., Bio-industry Management, China Agricultural University, Beijing, China 2012……………………………………………….. M.S., Dept. of Virology, Wuhan University, Wuhan, China 2013 to 2016……………………………………… Ph.D. Student, Veterinary Pathobiology, University of Missouri, Columbia, Missouri 2016 to 2018……………………………………. Ph.D. Student, Veterinary Biosciences, The Ohio State University, Columbus, Ohio Publications 1. Yu J, Zheng YM, Liu SL. 2018. Zika Virus Down-regulates AXL and TIM-1 For Optimal Spread. In preparation. 2. Yu J, Liang C, Liu SL. 2018. A CD4-dependent Inhibitory Effect of LY6E on HIV-1 Entry. Journal of Virology, In revision. 3. Yu J, Liu SL. 2018. The Inhibition of HIV-1 Entry Imposed by Interferon Inducible Transmembrane Proteins Is Independent of Co-Receptor Usage. Viruses 10 (8), 413. 4. Lu W, Chen S, Yu J, Behrens R, Wiggins J, Sherer N, Liu SL, Xiong Y, Xiang SH, Wu L. 2018. Three residues in the polar region of HIV-1 gp41 determine viral fusion and infectivity. Cell Reports, under review. 5. Li M*, Waheed A*, Yu J*, Zheng YM, et al. Nef Antagonizes TIM-mediated Inhibition of HIV-1 Release: Role of SERINCs. Proc. Natl. Acad. Sci. U.S.A, in submission. 6. Li A, Yu J, Lu M, Ma Y, Attia Z, Shan C, He J, Liang X, Xue M, Jennings R, Shi PY, Peeples M, Liu SL, Boyaka P, Li J.
Recommended publications
  • Interactions De La Protéine Nsp1 Du Virus Chikungunya Avec Les Membranes De L’Hôte Et Conséquences Fonctionnelles William Bakhache
    Interactions de la protéine nsP1 du virus Chikungunya avec les membranes de l’hôte et conséquences fonctionnelles William Bakhache To cite this version: William Bakhache. Interactions de la protéine nsP1 du virus Chikungunya avec les membranes de l’hôte et conséquences fonctionnelles. Médecine humaine et pathologie. Université Montpellier, 2020. Français. NNT : 2020MONTT008. tel-03132645 HAL Id: tel-03132645 https://tel.archives-ouvertes.fr/tel-03132645 Submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE M ONTPELLIER En Biologie Santé École Doctorale Sciences Chimiques et Biologiques pour la Santé UMR 9004 - Institut de Recherche en Infectiologie de Montpellier Interactions de la protéine nsP1 du virus Chikungunya avec les membranes de l’hôte et conséquences fonctionnelles Présentée par William Bakhache Le 27 Mars 2020 Sous la direction de Laurence Briant Devant le jury composé de Jean-Luc Battini, Directeur de Recherche, IRIM, Montpellier Président de jury Ali Amara, Directeur de recherche, U944 INSERM, Paris Rapporteur Juan Reguera, Chargé de recherche, AFMB, Marseille Rapporteur Raphaël Gaudin, Chargé de recherche, IRIM, Montpellier Examinateur Yves Rouillé, Directeur de Recherche, CIIL, Lille Examinateur Bruno Coutard, Professeur des universités, UVE, Marseille Co-encadrant de thèse Laurence Briant, Directeur de recherche, IRIM, Montpellier Directeur de thèse 1 Acknowledgments I want to start by thanking the members of my thesis jury.
    [Show full text]
  • Viral Strategies to Arrest Host Mrna Nuclear Export
    Viruses 2013, 5, 1824-1849; doi:10.3390/v5071824 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export Sharon K. Kuss *, Miguel A. Mata, Liang Zhang and Beatriz M. A. Fontoura Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; E-Mails: [email protected] (M.A.M.); [email protected] (L.Z.); [email protected] (B.M.A.F) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-214-633-2001; Fax: +1-214-648-5814. Received: 10 June 2013; in revised form: 27 June 2013 / Accepted: 11 July 2013 / Published: 18 July 2013 Abstract: Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. Keywords: virus; influenza virus; vesicular stomatitis virus; VSV; NS1; matrix protein; nuclear export; nucleo-cytoplasmic trafficking; mRNA export; NXF1; TAP; CRM1; Rae1 1. Introduction Nucleo-cytoplasmic trafficking of proteins and RNA is critical for proper cellular functions and survival.
    [Show full text]
  • Meta-Analysis of Nasopharyngeal Carcinoma
    BMC Genomics BioMed Central Research article Open Access Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation Xia Chen†1,2, Shuang Liang†1, WenLing Zheng1,3, ZhiJun Liao1, Tao Shang1 and WenLi Ma*1 Address: 1Institute of Genetic Engineering, Southern Medical University, Guangzhou, PR China, 2Xiangya Pingkuang associated hospital, Pingxiang, Jiangxi, PR China and 3Southern Genomics Research Center, Guangzhou, Guangdong, PR China Email: Xia Chen - [email protected]; Shuang Liang - [email protected]; WenLing Zheng - [email protected]; ZhiJun Liao - [email protected]; Tao Shang - [email protected]; WenLi Ma* - [email protected] * Corresponding author †Equal contributors Published: 7 July 2008 Received: 16 February 2008 Accepted: 7 July 2008 BMC Genomics 2008, 9:322 doi:10.1186/1471-2164-9-322 This article is available from: http://www.biomedcentral.com/1471-2164/9/322 © 2008 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Epstein-Barr virus (EBV) presumably plays an important role in the pathogenesis of nasopharyngeal carcinoma (NPC), but the molecular mechanism of EBV-dependent neoplastic transformation is not well understood. The combination of bioinformatics with evidences from biological experiments paved a new way to gain more insights into the molecular mechanism of cancer. Results: We profiled gene expression using a meta-analysis approach. Two sets of meta-genes were obtained. Meta-A genes were identified by finding those commonly activated/deactivated upon EBV infection/reactivation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Encephalomyocarditis Virus Viroporin 2B Activates NLRP3 Inflammasome
    Encephalomyocarditis Virus Viroporin 2B Activates NLRP3 Inflammasome Minako Ito, Yusuke Yanagi, Takeshi Ichinohe* Department of Virology, Faculty of Medicine, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan Abstract Nod-like receptors (NLRs) comprise a large family of intracellular pattern- recognition receptors. Members of the NLR family assemble into large multiprotein complexes, termed the inflammasomes. The NLR family, pyrin domain-containing 3 (NLRP3) is triggered by a diverse set of molecules and signals, and forms the NLRP3 inflammasome. Recent studies have indicated that both DNA and RNA viruses stimulate the NLRP3 inflammasome, leading to the secretion of interleukin 1 beta (IL-1b) and IL-18 following the activation of caspase-1. We previously demonstrated that the proton-selective ion channel M2 protein of influenza virus activates the NLRP3 inflammasome. However, the precise mechanism by which NLRP3 recognizes viral infections remains to be defined. Here, we demonstrate that encephalomyocarditis virus (EMCV), a positive strand RNA virus of the family Picornaviridae, activates the NLRP3 inflammasome in mouse dendritic cells and macrophages. Although transfection with RNA from EMCV virions or EMCV-infected cells induced robust expression of type I interferons in macrophages, it failed to stimulate secretion of IL-1b. Instead, the EMCV viroporin 2B was sufficient to cause inflammasome activation in lipopolysaccharide-primed macrophages. While cells untransfected or transfected with the gene encoding the EMCV non-structural protein 2A or 2C expressed NLRP3 uniformly throughout the cytoplasm, NLRP3 was redistributed to the perinuclear space in cells transfected with the gene encoding the EMCV 2B or influenza virus M2 protein. 2B proteins of other picornaviruses, poliovirus and enterovirus 71, also caused the NLRP3 redistribution.
    [Show full text]
  • Direct Acting Antivirals for the Treatment of Chronic Viral Hepatitis
    Hindawi Publishing Corporation Scienti�ca Volume 2012, Article ID 478631, 22 pages http://dx.doi.org/10.6064/2012/478631 Review Article Direct Acting Antivirals for the Treatment of Chronic Viral Hepatitis Peter Karayiannis Section of Hepatology and Gastroenterology, Department of Medicine, Imperial College, St Mary’s Campus, London W2 1PG, UK Correspondence should be addressed to Peter Karayiannis; [email protected] Received 17 September 2012; Accepted 8 October 2012 Academic Editors: M. Clementi and W. Vogel Copyright © 2012 Peter Karayiannis. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e development and evaluation of antiviral agents through carefully designed clinical trials over the last 25 years have heralded a new dawn in the treatment of patients chronically infected with the hepatitis B and C viruses, but not so for the D virus (HBV, HCV, and HDV). e introduction of direct acting antivirals (DDAs) for the treatment of HBV carriers has permitted the long- term use of these compounds for the continuous suppression of viral replication, whilst in the case of HCV in combination with the standard of care [SOC, pegylated interferon (PegIFN), and ribavirin] sustained virological responses (SVRs) have been achieved with increasing frequency. Progress in the case of HDV has been slow and lacking in signi�cant breakthroughs.is paper aims to summarise the current state of play in treatment approaches for chonic viral hepatitis patients and future perspectives. 1. Introduction recombinant subsequently, both of which have more recently been superceded by the pegylated form (PegIFN), which Conservative estimates of the number of individuals world- requires intramuscular injection only once a week as opposed wide who are thought to be chronically infected with either to three times a week with the previous forms.
    [Show full text]
  • Lessons Learned from Ebola Virus
    membranes Review SARS-CoV-2 Cellular Infection and Therapeutic Opportunities: Lessons Learned from Ebola Virus Jordana Muñoz-Basagoiti 1,†, Daniel Perez-Zsolt 1,†, Jorge Carrillo 1 , Julià Blanco 1,2 , Bonaventura Clotet 1,2,3 and Nuria Izquierdo-Useros 1,* 1 IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain; [email protected] (J.M.-B.); [email protected] (D.P.-Z.); [email protected] (J.C.); [email protected] (J.B.); [email protected] (B.C.) 2 Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic (UVic-UCC), 08500 Vic, Spain 3 Infectious Diseases Department, Germans Trias i Pujol Hospital, 08916 Badalona, Spain * Correspondence: [email protected] † These authors contribution is equally to this work. Abstract: Viruses rely on the cellular machinery to replicate and propagate within newly infected individuals. Thus, viral entry into the host cell sets up the stage for productive infection and disease progression. Different viruses exploit distinct cellular receptors for viral entry; however, numerous viral internalization mechanisms are shared by very diverse viral families. Such is the case of Ebola virus (EBOV), which belongs to the filoviridae family, and the recently emerged coronavirus SARS- CoV-2. These two highly pathogenic viruses can exploit very similar endocytic routes to productively infect target cells. This convergence has sped up the experimental assessment of clinical therapies against SARS-CoV-2 previously found to be effective for EBOV, and facilitated their expedited clinical testing. Here we review how the viral entry processes and subsequent replication and egress strategies of EBOV and SARS-CoV-2 can overlap, and how our previous knowledge on antivirals, Citation: Muñoz-Basagoiti, J.; antibodies, and vaccines against EBOV has boosted the search for effective countermeasures against Perez-Zsolt, D.; Carrillo, J.; Blanco, J.; the new coronavirus.
    [Show full text]
  • A SARS-Cov-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
    A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing Supplementary Information Supplementary Discussion All SARS-CoV-2 protein and gene functions described in the subnetwork appendices, including the text below and the text found in the individual bait subnetworks, are based on the functions of homologous genes from other coronavirus species. These are mainly from SARS-CoV and MERS-CoV, but when available and applicable other related viruses were used to provide insight into function. The SARS-CoV-2 proteins and genes listed here were designed and researched based on the gene alignments provided by Chan et. al. 1 2020 .​ Though we are reasonably sure the genes here are well annotated, we want to note that not every ​ protein has been verified to be expressed or functional during SARS-CoV-2 infections, either in vitro or in vivo. ​ ​ In an effort to be as comprehensive and transparent as possible, we are reporting the sub-networks of these functionally unverified proteins along with the other SARS-CoV-2 proteins. In such cases, we have made notes within the text below, and on the corresponding subnetwork figures, and would advise that more caution be taken when examining these proteins and their molecular interactions. Due to practical limits in our sample preparation and data collection process, we were unable to generate data for proteins corresponding to Nsp3, Orf7b, and Nsp16. Therefore these three genes have been left out of the following literature review of the SARS-CoV-2 proteins and the protein-protein interactions (PPIs) identified in this study.
    [Show full text]
  • The Role of F-Box Proteins During Viral Infection
    Int. J. Mol. Sci. 2013, 14, 4030-4049; doi:10.3390/ijms14024030 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review The Role of F-Box Proteins during Viral Infection Régis Lopes Correa 1, Fernanda Prieto Bruckner 2, Renan de Souza Cascardo 1,2 and Poliane Alfenas-Zerbini 2,* 1 Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-970, Brazil; E-Mails: [email protected] (R.L.C.); [email protected] (R.S.C.) 2 Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-31-3899-2955; Fax: +55-31-3899-2864. Received: 23 October 2012; in revised form: 14 December 2012 / Accepted: 17 January 2013 / Published: 18 February 2013 Abstract: The F-box domain is a protein structural motif of about 50 amino acids that mediates protein–protein interactions. The F-box protein is one of the four components of the SCF (SKp1, Cullin, F-box protein) complex, which mediates ubiquitination of proteins targeted for degradation by the proteasome, playing an essential role in many cellular processes. Several discoveries have been made on the use of the ubiquitin–proteasome system by viruses of several families to complete their infection cycle. On the other hand, F-box proteins can be used in the defense response by the host. This review describes the role of F-box proteins and the use of the ubiquitin–proteasome system in virus–host interactions.
    [Show full text]
  • Global Burden of Norovirus and Prospects for Vaccine Development
    Global Burden of Norovirus and Prospects for Vaccine Development Primary author Ben Lopman Centers for Disease Control and Prevention Contributors and Reviewers Robert Atmar, Baylor College of Medicine Ralph Baric, University of North Carolina Mary Estes, Baylor College of Medicine Kim Green, NIH; National Institute of Allergy and Infectious Diseases Roger Glass, NIH; Fogarty International Center Aron Hall, Centers for Disease Control and Prevention Miren Iturriza-Gómara, University of Liverpool Cherry Kang, Christian Medical College Bruce Lee, Johns Hopkins University Umesh Parashar, Centers for Disease Control and Prevention Mark Riddle, Naval Medical Research Center Jan Vinjé, Centers for Disease Control and Prevention The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention, or the US Department of Health and Human Services. This work was funded in part by a grant from the Bill & Melinda Gates Foundation to the CDC Foundation. GLOBAL BURDEN OF NOROVIRUS AND PROSPECTS FOR VACCINE DEVELOPMENT | 1 Table of Contents 1. Executive summary ....................................................................3 2. Burden of disease and epidemiology 7 a. Burden 7 i. Global burden and trends of diarrheal disease in children and adults 7 ii. The role of norovirus 8 b. Epidemiology 9 i. Early childhood infections 9 ii. Risk factors, modes and settings of transmission 10 iii. Chronic health consequences associated with norovirus infection? 11 c. Challenges in attributing disease to norovirus 12 3. Norovirus biology, diagnostics and their interpretation for field studies and clinical trials..15 a. Norovirus virology 15 i. Genetic diversity, evolution and related challenges for diagnosis 15 ii.
    [Show full text]
  • Thiopurines Activate an Antiviral Unfolded Protein Response That
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.319863; this version posted October 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thiopurines activate an antiviral unfolded protein response that blocks viral glycoprotein 2 accumulation in cell culture infection model 3 Patrick Slaine1, Mariel Kleer 2, Brett Duguay 1, Eric S. Pringle 1, Eileigh Kadijk 1, Shan Ying 1, 4 Aruna D. Balgi 3, Michel Roberge 3, Craig McCormick 1, #, Denys A. Khaperskyy 1, # 5 6 1Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax 7 NS, Canada B3H 4R2 8 2Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 9 Hospital Drive NW, Calgary AB, Canada T2N 4N1 10 3Department of Biochemistry and Molecular Biology, 2350 Health Sciences Mall, University of 11 British Columbia, Vancouver BC, Canada V6T 1Z3 12 13 14 #Co-corresponding authors: C.M., [email protected], D.A.K., [email protected] 15 16 17 Running Title: Drug-induced antiviral unfolded protein response 18 Keywords: virus, influenza, coronavirus, SARS-CoV-2, thiopurine, 6-thioguanine, 6- 19 thioguanosine, unfolded protein response, hemagglutinin, neuraminidase, glycosylation, host- 20 targeted antiviral 21 22 23 ABSTRACT 24 Enveloped viruses, including influenza A viruses (IAVs) and coronaviruses (CoVs), utilize the 25 host cell secretory pathway to synthesize viral glycoproteins and direct them to sites of assembly. 26 Using an image-based high-content screen, we identified two thiopurines, 6-thioguanine (6-TG) 27 and 6-thioguanosine (6-TGo), that selectively disrupted the processing and accumulation of IAV 28 glycoproteins hemagglutinin (HA) and neuraminidase (NA).
    [Show full text]
  • S41467-020-18249-3.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.
    [Show full text]