New Data on Perkinsus Mediterraneus in the Balearic Archipelago: Locations and Affected Species

Total Page:16

File Type:pdf, Size:1020Kb

New Data on Perkinsus Mediterraneus in the Balearic Archipelago: Locations and Affected Species Vol. 112: 69–82, 2014 DISEASES OF AQUATIC ORGANISMS Published November 13 doi: 10.3354/dao02795 Dis Aquat Org New data on Perkinsus mediterraneus in the Balearic Archipelago: locations and affected species J. M. Valencia1, M. Bassitta2, A. Picornell2, C. Ramon2, J. A. Castro2,* 1Laboratori d’Investigacions Marines i Aqüicultura (LIMIA), Av. Ingeniero Gabriel Roca, 69, Port d’Andratx, Illes Balears, 07158, Spain 2Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears, Campus de la UIB, Palma de Mallorca, Illes Balears, 07122, Spain ABSTRACT: Perkinsus mediterraneus, a protozoan parasite that can cause perkinsosis (marine mollusc disease), was first detected in oysters Ostrea edulis from Mahon (Minorca, Balearic Islands, Spain) in 2004. Several years later it was also found in Andratx Harbour (Majorca, Balearic Islands) and in the Gulf of Manfredonia (Adriatic coast of Italy) in oyster populations. Since 2007, Perkinsus surveys have been conducted in different localities and shellfish species in the Balearic Archipelago. In the present work, we found P. mediterraneus in the Balearic Islands infecting oyster and other shellfish species. We describe infection with P. mediterraneus for the first time in Arca noae and Mimachlamys varia. The detection was carried out using Ray’s fluid thioglycolate medium (RFTM), histology and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methodologies. The internal transcribed spacer (ITS) region (including ITS1, 5.8S and ITS2) of P. mediterraneus ribosomal DNA was sequenced from infected bivalve gills (or from the body in Chamelea gallina) from Balearic Archipelago localities. Twelve haplotypes with a strong genetic similarity between them (97−100%) were observed in our sam- ples. These data were completed with 12 more haplotypes from GenBank sequences. The phylo- genetic relationship between Balearic P. mediterraneus haplotypes found in this study, those pre- viously obtained in Mahon Harbour, and the Perkinsus spp. sequences available in GenBank clearly grouped the different Perkinsus spp. in distinct clades supported by strong bootstrap val- ues. Moreover, these analyses detected different P. mediterraneus groups in O. edulis from Minorca Island. No abnormal mortalities or decline in populations were detected during the sur- vey, except for C. gallina, which is also affected by Marteilia refringens. KEY WORDS: Perkinsus mediterraneus · Arca noae · Chamelea gallina · Mimachlamys varia · Ostrea edulis · Balearic Islands · Internal transcribed spacer Resale or republication not permitted without written consent of the publisher INTRODUCTION Canada (Bower et al. 1998), along the Atlantic coast of SW Europe (Azevedo 1989), in the Mediterranean Sea Perkinsosis is a marine mollusc disease caused by (Da Ros & Canonzier 1985, Santmartí et al. 1995), in Perkinsus spp. protozoan parasites. It has been associ- southern Australia (Lester & Davis 1981, Goggin & ated with elevated mortalities of commercially impor- Lester 1995), and along the south and west coasts of tant molluscs in the Gulf of Mexico, along the Atlantic Korea (Choi & Park 1997, Park & Choi 2001). coast of North America (Andrews & Hewatt 1957, Several Perkinsus species have been found in mol- Mackin & Hopkins 1962, Burreson & Ragone Calvo luscs, but to date, only 7 are recognized as valid. The 1996, Ford 1996, Soniat 1996), in British Colum bia, first described species was P. marinus in USA in the *Corresponding author: [email protected] © Inter-Research 2014 · www.int-res.com 70 Dis Aquat Org 112: 69–82, 2014 1940s; it affects the American oyster Crassostrea vir- internal transcribed spacer (ITS) sequences. The ginica and induces severe mortalities (Ray 1966b). phylogenetic relationships between P. mediterraneus P. olseni, the second named species of Perkinsus, was lineages from this area with other Perkinsus spp. described in 1981 in the abalone Haliotis ruber in were also established. Australia, and was also found to be responsible for important mortalities of the abalone H. laevigata (Lester & Davis 1981, Goggin & Lester 1995). It is also MATERIALS AND METHODS believed to occur in a wide variety of mollusc species from the Great Barrier Reef (Goggin & Lester 1995). Mollusc tissue samples In 1989, P. atlanticus was detected in the carpet shell clam Ruditapes decussatus following mass mortali- A total of 314 wild and cultivated European flat oys- ties in Portugal (Azevedo 1989). Other clams and ters Ostrea edulis, Noah’s Ark shells Arca noae, areas have also revealed the presence of these spe- striped Venus shells Chamelea gallina, cultivated var- cies (Villalba et al. 2004). In the meantime, molecular iegated scallops Mimachlamys varia and mussels systematics demonstrated that P. olseni was a senior Mytilus galloprovincialis were collected from coastal synonym of P. atlanticus (Murrell et al. 2002). Two locations in Minorca, Majorca and Ibiza-Formentera, other Perkinsus species were proved to be synony- Spain, in September from 2007 to 2013 (Table 1, mous on the basis of molecular analysis: P. chesa- Fig. 1). One gill from each individual was preserved in peaki, a parasite of the soft-shell clam Mya arenaria 95% (v/v) ethanol for DNA extraction and PCR analy- (McLaughlin et al. 2000), and P. andrewsi, a parasite sis, except for C. gallina, in which half of the body was of the Baltic clam Macoma bal thica (Coss et al. 2001). used, due to their small size. Visceral mass sections P. qugwadi, res ponsible for mortalities of the Japan- were also preserved for histological examination. ese scallop Patinopecten yessoensis in Canada, is distinguished from the other species so far identified because of its distinct characteristics: it does not RFTM assays enlarge in Ray’s fluid thioglycollate medium (RFTM) or stain blue-black with Lugol’s iodine (no develop- For these assays, the other gill from each individual ment in prezoosporangia); its zoospores can develop or a quarter of the C. gallina whole body was individ- within the interstitial space of its living host; it can ually incubated in RFTM (Ray 1966a) supplemented proliferate and be a pathogen at cold temperatures, with chloramphenicol and nystatin for a week at and its molecular characteristics are considerably dif- room temperature in the dark, to induce transfor - ferent from other species of Perkinsus (Bower et al. mation of the parasite’s trophozoites into hypno - 1998, Blackbourn et al. 1998). Currently, its classifi- spores of Perkinsus. These samples were then par- cation in the Perkinsus genus is controversial (Casas tially crushed on a slide using a scalpel, stained with et al. 2002b). Other new Perkinsus species have been Lugol’s iodine solution and observed under light characterized: P. mediterraneus in the flat oyster microscopy to estimate the intensity of Perkinsus Ostrea edulis from the Balearic Islands, Spain (Casas infection according to the following scale (Ray 1954, et al. 2004), P. honshuensis in Manila clam R. philip- modified in Andrews & Hewatt 1957)–0 = null infec- pinarum from Japan (Dungan & Reece 2006), and tion: no Perkinsus sp. detected in the whole slide P. beihaiensis in the oysters C. hong kong ensis and (40×); 1 = very light infection: from 1 Perkinsus sp. C. ariakensis from southern China (Moss et al. 2008). hypnospore observed in the whole slide (40×); 2 = In Mediterranean waters, only 2 species, P. olseni light infection: at least 1 Perkinsus sp. hypnospore and P. mediterraneus, have been described (Casas et observed in every one of 10 random fields scattered al. 2004, Abollo et al. 2006, Elandaloussi et al. 2009, throughout the preparation (40×); 3 = moderate Valencia 2010, Ramilo et al. 2010). Polymerase chain infection: at least 10 Perkinsus sp. hypnospores reaction-restriction fragment length polymorphism observed in every one of 10 random fields (40×), scat- (PCR-RFLP) and in situ hybridization have been used tered throughout the preparation; 4 = heavy infec- for differential diagnosis between them. tion: at least 10 Perkinsus sp. hypnospores observed In the present study, we report the presence of in every one of 10 random fields (100×), scattered P. mediterraneus found in several mollusc species throughout the preparation; and 5 = very heavy (O. edulis, Mimachlamys varia, Chamelea gallina infection: at least 50 Perkinsus sp. hypnospores ob - and Arca noae) from the Balearic Islands, based on served in every one of 10 random fields (100×), scat- RFTM assay, histology, PCR-RFLP and analysis of tered throughout the preparation. Valencia et al.: Perkinsus mediterraneus in the Balearic Archipelago 71 Table 1. Ray’s fluid thioglycolate medium (RFTM) assay results obtained for Perkinsus infection. All bivalves (N = 314) were sampled in September except once in 2013. Mackin’s scale was used to determine the degree of infection. The average value for each assay is represented. Oysters from Ibiza-Formentera were frozen, so RTFM results were obviously negative; however, PCR results indicated that 11 of them were infected, but no data were obtained concerning degree of infection. Size is mean ± SD Location Bivalve sp. N Year Infected Detection Degree of Size (%) infection (mm) 1 Mahon Harbour Ostrea edulisa 32 2007 25 78.10 2.01 99.14±11.64 2 Fornells Bay Ostrea edulis 13 2010 8 61.50 0.77 86.52±11.98 3 Andratx Harbour Ostrea edulis 8 2011 5 62.50 1.37 74.66±9.96 6 2012 3 50.00 1.75 69.96±18.55 6 2013 4 66.70 0.67 87.40±14.56 Mimachlamys variaa 25 2011 15 60.00 0.87 34.52±7.81 25 2012 21 84.00 2.44 33.16±4.71 30 2013 25 83.30 2.4 41.97±6.66 14 2013b 14 100 2.36 34.49±4.69 Arca noae 20 2011 8 40.00 1.26 44.55±5.15 30 2012 16 53.30 0.8 50.29±5.88 Mytilus galloprovincialisa 30 2012 0 0 0 50.29±5.88 4 Palmanova Ostrea edulis 18 2010 5 27.80 1.14 90.67±19.00 5 Porto Cristo Ostrea edulis 15 2010 9 60.00 0.78 33.03±4.23 6 Ibiza-Formentera Ostrea edulis 18 2011 11a 61.10 No data 84.79±33.83 7 Arenal Beach Chamelea gallina 24 2012 6 25.00 0.25 20.40±0.82 aCultivated bivalves bSampled in October Fig.
Recommended publications
  • The Lioconcha Castrensis Species Group (Bivalvia : Veneridae), with the Description of Two New Species
    Molluscan Research 30(3): 117–124 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press The Lioconcha castrensis species group (Bivalvia : Veneridae), with the description of two new species SANCIA E.T. VAN DER MEIJ1, ROBERT G. MOOLENBEEK2 & HENK DEKKER2 1 Netherlands Centre for Biodiversity Naturalis (department of Marine Zoology), P.O. Box 9517, 2300 RA Leiden, The Nether- lands. Email: [email protected] (corresponding author) 2 Netherlands Centre for Biodiversity Naturalis (section Zoological Museum of Amsterdam), Mauritskade 57, 1092 AD Amsterdam, The Netherlands. Email: [email protected] Abstract Part of the genus Lioconcha Mörch, 1853 is reviewed. Species strongly resembling Lioconcha castrensis (Linnaeus, 1758) are discussed and two new species are described: Lioconcha arabaya n. sp. from the Northwest Indian Ocean and Lioconcha rumphii n. sp. from Thailand and Sumatra. These three species, together with Lioconcha macaulayi Lamprell & Healy, 2002, share many morphological similarities and we suspect them to be closely related. They are referred to as the Lioconcha cast- rensis species group. Furthermore, lectotypes of Venus castrensis Linnaeus, 1758, and Venus fulminea Röding, 1798, are desig- nated. The latter is considered a junior synonym of V. castrensis. Key words: Indo-Pacific, Mollusca, Persian Gulf, Red Sea, taxonomy Introduction between the anterior and posterior extremities, height is measured vertically from the umbo to the ventral margin and The delimitation within the tropical venerid genus Lioconcha total width (or inflation) is the greatest distance between the Mörch, 1853, is problematic, due to high levels of external surfaces of the paired valves. For an extensive list of intraspecific morphological variability and relatively few synonyms of figured specimens of Lioconcha castrensis we useful morphological characters (Lamprell and Healy 2002).
    [Show full text]
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Foot Abnormalities in Venericardia Antiquata and Venus Verrucosa from the Bizerte Lagoon Complex
    e Rese tur arc ul h c & a u D q e A v e f l o o Béjaoui et al., J Aquac Res Development 2016, 7:7 l p a m n Journal of Aquaculture r e u n DOI: 10.4172/2155-9546.1000434 o t J ISSN: 2155-9546 Research & Development Research Article OpenOpen Access Access Foot Abnormalities in Venericardia antiquata and Venus verrucosa from the Bizerte Lagoon Complex (Northern Tunisia): Hydrodynamics and Sediment Texture Inductions Jihen Maâtoug Béjaoui, Ferdaous Jaafar Kefi, Anwar Mleiki and Najoua Trigui El Menif* Faculty of Sciences of Bizerte (FSB), Laboratory of Environment Biomonitoring, University of Carthage, Bizerte, Tunisia Abstract The Examination of the soft part of the two bivalve species Venericardia antiquata (Linnaeus 1758) and Venus verrucosa (Linnaeus 1758), that occur together in northern coast of Tunisia, allowed us to discover for the first time the presence of morphological abnormalities affecting the foot of many individuals (annual rate of 31.6%). The presence of a developed byssus was also detected in some specimens of V. antiquata. A classification scale of this malformation, established depending on the degree of this anomaly, showed six initial types that evolve to form two or three feet, at the posterior and/or anterior sides of the animal. In order to determine the causes of this malformation, experiments of transplantation were carried out. Specimens of V. verrucosa collected from Zarzouna station were transplanted in Chaâra station which is characterized by low rate of malformations, low hydrodynamics and different sediment type and vice versa. Results revealed that foot malformations degree is highly correlated with both hydrodynamics and substrate type.
    [Show full text]
  • Mercenaria Mercenaria ©
    Mercenaria mercenaria © 16mar2001 Copyright 2001 by Richard Fox Lander University Ph. MOLLUSCA, Cl.Bivalvia, sCl.Heterodonta, O.Veneroida, F.Veneridae Introduction Mollusca The phylum Mollusca is the second largest in the animal kingdom and comprises several classes consisting of the Monoplacophora, Polyplacophora, Gastropoda, Bivalvia, Scaphopoda, Aplacophora, and Cephalopoda. The typical mollusc has a shell, muscular foot, head with mouth and sense organs, and a visceral mass containing most of the gut and the heart, gonads, and kidney. Part of the body is enclosed in a mantle formed of a fold of the body wall. The mantle encloses a space known as the mantle cavity which is filled with water or air and in which the respiratory organs, anus, nephridiopore(s) and gonopore(s) are located. The coelom is reduced to small spaces including the pericardial cavity and gonocoel. The well-developed blood vascular system consists of the heart and vessels leading to a spacious hemocoel in which most of the viscera are located. The kidneys are large metanephridia. Molluscs may be either gonochoristic or hermaphroditic. Spiral cleavage produces a characteristic veliger larva in most groups unless it is suppressed in favor of direct development or another larva. Molluscs are well represented in marine, freshwater, and terrestrial habitats. Bivalvia Bivalvia is a large class of molluscs whose shell is divided into right and left portions. There is usually a crystalline style but never a radula. Bivalves are flattened from side to side and the head is reduced and bears no special sense organs. The large mantle cavity is located on the sides and contains the large gills.
    [Show full text]
  • Spatial Variability in Recruitment of an Infaunal Bivalve
    Spatial Variability in Recruitment of an Infaunal Bivalve: Experimental Effects of Predator Exclusion on the Softshell Clam (Mya arenaria L.) along Three Tidal Estuaries in Southern Maine, USA Author(s): Brian F. Beal, Chad R. Coffin, Sara F. Randall, Clint A. Goodenow Jr., Kyle E. Pepperman, Bennett W. Ellis, Cody B. Jourdet and George C. Protopopescu Source: Journal of Shellfish Research, 37(1):1-27. Published By: National Shellfisheries Association https://doi.org/10.2983/035.037.0101 URL: http://www.bioone.org/doi/full/10.2983/035.037.0101 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 37, No. 1, 1–27, 2018. SPATIAL VARIABILITY IN RECRUITMENT OF AN INFAUNAL BIVALVE: EXPERIMENTAL EFFECTS OF PREDATOR EXCLUSION ON THE SOFTSHELL CLAM (MYA ARENARIA L.) ALONG THREE TIDAL ESTUARIES IN SOUTHERN MAINE, USA 1,2 3 2 3 BRIAN F.
    [Show full text]
  • Chamelea Gallina in the Coastal Waters of the Anapa Bay
    Oceanologia (2019) 61, 471—483 Available online at www.sciencedirect.com ScienceDirect j ournal homepage: www.journals.elsevier.com/oceanologia/ ORIGINAL RESEARCH ARTICLE Chamelea gallina in the coastal waters of the Anapa bay bar (the Black Sea) as a carbonate sediment producer a, b Alisa R. Kosyan *, Boris V. Divinsky a A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia b P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia Received 22 October 2018; accepted 26 April 2019 Available online 16 May 2019 KEYWORDS Summary The paper presents preliminary results of monitoring the population of the bivalve Population; Chamelea gallina, which is the main source of biogenic carbonates for the Anapa bay bar beaches Biomass; (the Black Sea). It is shown that by 2017, the biomass of the clams decreased more than twice compared to 2010, but began to increase in 2018. The average sizes of C. gallina are clearly Shell length; Age; divided in terms “year” — “section” — “age”. At the same time, interannual variations of the average size are very strong in all age groups. The average shell length of C. gallina significantly Rapana venosa; increased in 2018 compared to 2016, and especially — to 2017. This may be caused by the Black Sea population decline of the predator Rapana venosa feeding on clams. Geographic differences in the shell length between sections are not directly related to the distribution of biogenic elements (nitrogen and phosphorus). The differences in longevity and shell size between C. gallina from the Anapa region and distant populations from the other parts of the distribution area are likely related to its significant negative correlation with the growth rate, which in turn negatively correlates with latitude.
    [Show full text]
  • Decapoda, Brachyura
    APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA de Decápodos Braquiuros de la Península Ibérica bérica I enínsula P raquiuros de la raquiuros B ecápodos D de APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA LA DE IDENTIFICACIÓN EN LA Y MOLECULARES MORFOLÓGICAS TÉCNICAS DE APLICACIÓN Herrero - MEGALOPA “big eyes” Leach 1793 Elena Marco Elena Marco-Herrero Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 Tesis Doctoral, Valencia 2015 Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA DE DECÁPODOS BRAQUIUROS DE LA PENÍNSULA IBÉRICA TESIS DOCTORAL Elena Marco-Herrero Valencia, septiembre 2015 Directores José Antonio Cuesta Mariscal / Ferran Palero Pastor Tutor Álvaro Peña Cantero Als naninets AGRADECIMIENTOS-AGRAÏMENTS Colaboración y ayuda prestada por diferentes instituciones: - Ministerio de Ciencia e Innovación (actual Ministerio de Economía y Competitividad) por la concesión de una Beca de Formación de Personal Investigador FPI (BES-2010- 033297) en el marco del proyecto: Aplicación de técnicas morfológicas y moleculares en la identificación de estados larvarios planctónicos de decápodos braquiuros ibéricos (CGL2009-11225) - Departamento de Ecología y Gestión Costera del Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) - Club Náutico del Puerto de Santa María - Centro Andaluz de Ciencias y Tecnologías Marinas (CACYTMAR) - Instituto Español de Oceanografía (IEO), Centros de Mallorca y Cádiz - Institut de Ciències del Mar (ICM-CSIC) de Barcelona - Institut de Recerca i Tecnología Agroalimentàries (IRTA) de Tarragona - Centre d’Estudis Avançats de Blanes (CEAB) de Girona - Universidad de Málaga - Natural History Museum of London - Stazione Zoologica Anton Dohrn di Napoli (SZN) - Universitat de Barcelona AGRAÏSC – AGRADEZCO En primer lugar quisiera agradecer a mis directores, el Dr.
    [Show full text]
  • Alien Species in the Mediterranean Sea by 2010
    Mediterranean Marine Science Review Article Indexed in WoS (Web of Science, ISI Thomson) The journal is available on line at http://www.medit-mar-sc.net Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution A. ZENETOS 1, S. GOFAS 2, M. VERLAQUE 3, M.E. INAR 4, J.E. GARCI’A RASO 5, C.N. BIANCHI 6, C. MORRI 6, E. AZZURRO 7, M. BILECENOGLU 8, C. FROGLIA 9, I. SIOKOU 10 , D. VIOLANTI 11 , A. SFRISO 12 , G. SAN MART N 13 , A. GIANGRANDE 14 , T. KATA AN 4, E. BALLESTEROS 15 , A. RAMOS-ESPLA ’16 , F. MASTROTOTARO 17 , O. OCA A 18 , A. ZINGONE 19 , M.C. GAMBI 19 and N. STREFTARIS 10 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, P.O. Box 712, 19013 Anavissos, Hellas 2 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 3 UMR 6540, DIMAR, COM, CNRS, Université de la Méditerranée, France 4 Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 5 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 6 DipTeRis (Dipartimento per lo studio del Territorio e della sue Risorse), University of Genoa, Corso Europa 26, 16132 Genova, Italy 7 Institut de Ciències del Mar (CSIC) Passeig Mar tim de la Barceloneta, 37-49, E-08003 Barcelona, Spain 8 Adnan Menderes University, Faculty of Arts & Sciences, Department of Biology, 09010 Aydin, Turkey 9 c\o CNR-ISMAR, Sede Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy 10 Institute of Oceanography, Hellenic Centre for Marine Research, P.O.
    [Show full text]
  • Chamelea Gallina) Fishery
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 Dredge selectivity in a Mediterranean striped venus clam (Chamelea gallina) fishery Petetta, Andrea; Herrmann, Bent; Virgili, Massimo; Bargione, Giada; Vasapollo, Claudio; Lucchetti, Alessandro Published in: Fisheries Research Link to article, DOI: 10.1016/j.fishres.2021.105895 Publication date: 2021 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Petetta, A., Herrmann, B., Virgili, M., Bargione, G., Vasapollo, C., & Lucchetti, A. (2021). Dredge selectivity in a Mediterranean striped venus clam (Chamelea gallina) fishery. Fisheries Research, 238, [105895]. https://doi.org/10.1016/j.fishres.2021.105895 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Fisheries Research 238 (2021) 105895 Contents lists available at ScienceDirect
    [Show full text]
  • Environmental Heterogeneity and Benthic Macroinvertebrate Guilds in Italian Lagoons Alberto Basset, Nicola Galuppo & Letizia Sabetta
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ESE - Salento University Publishing Transitional Waters Bulletin TWB, Transit. Waters Bull. 1(2006), 48-63 ISSN 1825-229X, DOI 10.1285/i1825226Xv1n1p48 http://siba2.unile.it/ese/twb Environmental heterogeneity and benthic macroinvertebrate guilds in italian lagoons Alberto Basset, Nicola Galuppo & Letizia Sabetta Department of Biological and Environmental Sciences and Technologies University of Salento S.P. Lecce-Monteroni 73100 Lecce RESEARCH ARTICLE ITALY Abstract 1 - Lagoons are ecotones between freshwater, marine and terrestrial biotopes, characterized by internal ecosystem heterogeneity, due to patchy spatial and temporal distribution of biotic and abiotic components, and inter-ecosystem heterogeneity, due to the various terrestrial-freshwater and freshwater-marine interfaces. 2 - Here, we carried out an analysis of environmental heterogeneity and benthic macro-invertebrate guilds in a sample of 26 Italian lagoons based on literature produced over a 25 year period.. 3 - In all, 944 taxonomic units, belonging to 13 phyla, 106 orders and 343 families, were recorded. Most species had a very restricted geographic distribution range. 75% of the macroinvertebrate taxa were observed in less than three of the twenty-six lagoons considered. 4 - Similarity among macroinvertebrate guilds in lagoon ecosystems was remarkably low, ranging from 10.5%±7.5% to 34.2%±14.4% depending on the level of taxonomic resolution. 5 - Taxonomic heterogeneity was due to both differences in species richness and to differences in species composition: width of seaward outlet, lagoon surface area and water salinity were the most important factors affecting species richness, together accounting for up to 75% of observed inter-lagoon heterogeneity, while distance between lagoons was the most significant factor affecting similarity of species composition.
    [Show full text]
  • Endangered Species (Import and Export) Act (Chapter 92A)
    1 S 23/2005 First published in the Government Gazette, Electronic Edition, on 11th January 2005 at 5:00 pm. NO.S 23 ENDANGERED SPECIES (IMPORT AND EXPORT) ACT (CHAPTER 92A) ENDANGERED SPECIES (IMPORT AND EXPORT) ACT (AMENDMENT OF FIRST, SECOND AND THIRD SCHEDULES) NOTIFICATION 2005 In exercise of the powers conferred by section 23 of the Endangered Species (Import and Export) Act, the Minister for National Development hereby makes the following Notification: Citation and commencement 1. This Notification may be cited as the Endangered Species (Import and Export) Act (Amendment of First, Second and Third Schedules) Notification 2005 and shall come into operation on 12th January 2005. Deletion and substitution of First, Second and Third Schedules 2. The First, Second and Third Schedules to the Endangered Species (Import and Export) Act are deleted and the following Schedules substituted therefor: ‘‘FIRST SCHEDULE S 23/2005 Section 2 (1) SCHEDULED ANIMALS PART I SPECIES LISTED IN APPENDIX I AND II OF CITES In this Schedule, species of an order, family, sub-family or genus means all the species of that order, family, sub-family or genus. First column Second column Third column Common name for information only CHORDATA MAMMALIA MONOTREMATA 2 Tachyglossidae Zaglossus spp. New Guinea Long-nosed Spiny Anteaters DASYUROMORPHIA Dasyuridae Sminthopsis longicaudata Long-tailed Dunnart or Long-tailed Sminthopsis Sminthopsis psammophila Sandhill Dunnart or Sandhill Sminthopsis Thylacinidae Thylacinus cynocephalus Thylacine or Tasmanian Wolf PERAMELEMORPHIA
    [Show full text]
  • Nutritional Composition, Bioactive Compounds and Health-Beneficial Properties of Black Sea Shellfish
    https://doi.org/10.5272/jimab.2020263.3293 Journal of IMAB Journal of IMAB - Annual Proceeding (Scientific Papers). 2020 Jul-Sep;26(3) ISSN: 1312-773X https://www.journal-imab-bg.org Review article NUTRITIONAL COMPOSITION, BIOACTIVE COMPOUNDS AND HEALTH-BENEFICIAL PROPERTIES OF BLACK SEA SHELLFISH Veselina Panayotova1, Albena Merdzhanova1, Diana A. Dobreva1, Kameliya Bratoeva2, Lubomir Makedonski1 1) Department of Chemistry, Faculty of Pharmacy, Medical University of Varna, Bulgaria. 2) Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, Bulgaria. ABSTRACT the quality of shellfish as nutraceuticals. Contemporary stud- Marine bivalves are characterized as high nutritional, ies show the potential of bivalves as a very good source of easily digestible food, low calories but high in proteins. antioxidants (phenolic compounds) exhibiting antimicro- The activity of biologically active substances in shellfish bial activity. from the Black Sea region is very poorly studied. A small Specific information on the nutrient content of re- number of publications devoted to the functional activity gional foods, especially seafood, is on the basis of a number of tissue and/or extracts from Black Sea shellfish are found of government food strategies and policies. Data may help in the literature. The main scientific objective of the project specialized public authorities and organizations with re- is to study the quality and functional potential of three spe- gard to food quality and related costs; developing adequate cies of Black Sea bivalves: black mussel (Mytilus gallo- strategies and policies aiming to improve the nutritional provincialis), striped venus clam (Chamelea gallina) and literacy of the population; and solve issues of malnutrition wedge clam (Donax trunculus).
    [Show full text]