Chapter 3: Affected Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Lioconcha Castrensis Species Group (Bivalvia : Veneridae), with the Description of Two New Species
Molluscan Research 30(3): 117–124 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press The Lioconcha castrensis species group (Bivalvia : Veneridae), with the description of two new species SANCIA E.T. VAN DER MEIJ1, ROBERT G. MOOLENBEEK2 & HENK DEKKER2 1 Netherlands Centre for Biodiversity Naturalis (department of Marine Zoology), P.O. Box 9517, 2300 RA Leiden, The Nether- lands. Email: [email protected] (corresponding author) 2 Netherlands Centre for Biodiversity Naturalis (section Zoological Museum of Amsterdam), Mauritskade 57, 1092 AD Amsterdam, The Netherlands. Email: [email protected] Abstract Part of the genus Lioconcha Mörch, 1853 is reviewed. Species strongly resembling Lioconcha castrensis (Linnaeus, 1758) are discussed and two new species are described: Lioconcha arabaya n. sp. from the Northwest Indian Ocean and Lioconcha rumphii n. sp. from Thailand and Sumatra. These three species, together with Lioconcha macaulayi Lamprell & Healy, 2002, share many morphological similarities and we suspect them to be closely related. They are referred to as the Lioconcha cast- rensis species group. Furthermore, lectotypes of Venus castrensis Linnaeus, 1758, and Venus fulminea Röding, 1798, are desig- nated. The latter is considered a junior synonym of V. castrensis. Key words: Indo-Pacific, Mollusca, Persian Gulf, Red Sea, taxonomy Introduction between the anterior and posterior extremities, height is measured vertically from the umbo to the ventral margin and The delimitation within the tropical venerid genus Lioconcha total width (or inflation) is the greatest distance between the Mörch, 1853, is problematic, due to high levels of external surfaces of the paired valves. For an extensive list of intraspecific morphological variability and relatively few synonyms of figured specimens of Lioconcha castrensis we useful morphological characters (Lamprell and Healy 2002). -
Foot Abnormalities in Venericardia Antiquata and Venus Verrucosa from the Bizerte Lagoon Complex
e Rese tur arc ul h c & a u D q e A v e f l o o Béjaoui et al., J Aquac Res Development 2016, 7:7 l p a m n Journal of Aquaculture r e u n DOI: 10.4172/2155-9546.1000434 o t J ISSN: 2155-9546 Research & Development Research Article OpenOpen Access Access Foot Abnormalities in Venericardia antiquata and Venus verrucosa from the Bizerte Lagoon Complex (Northern Tunisia): Hydrodynamics and Sediment Texture Inductions Jihen Maâtoug Béjaoui, Ferdaous Jaafar Kefi, Anwar Mleiki and Najoua Trigui El Menif* Faculty of Sciences of Bizerte (FSB), Laboratory of Environment Biomonitoring, University of Carthage, Bizerte, Tunisia Abstract The Examination of the soft part of the two bivalve species Venericardia antiquata (Linnaeus 1758) and Venus verrucosa (Linnaeus 1758), that occur together in northern coast of Tunisia, allowed us to discover for the first time the presence of morphological abnormalities affecting the foot of many individuals (annual rate of 31.6%). The presence of a developed byssus was also detected in some specimens of V. antiquata. A classification scale of this malformation, established depending on the degree of this anomaly, showed six initial types that evolve to form two or three feet, at the posterior and/or anterior sides of the animal. In order to determine the causes of this malformation, experiments of transplantation were carried out. Specimens of V. verrucosa collected from Zarzouna station were transplanted in Chaâra station which is characterized by low rate of malformations, low hydrodynamics and different sediment type and vice versa. Results revealed that foot malformations degree is highly correlated with both hydrodynamics and substrate type. -
Mercenaria Mercenaria ©
Mercenaria mercenaria © 16mar2001 Copyright 2001 by Richard Fox Lander University Ph. MOLLUSCA, Cl.Bivalvia, sCl.Heterodonta, O.Veneroida, F.Veneridae Introduction Mollusca The phylum Mollusca is the second largest in the animal kingdom and comprises several classes consisting of the Monoplacophora, Polyplacophora, Gastropoda, Bivalvia, Scaphopoda, Aplacophora, and Cephalopoda. The typical mollusc has a shell, muscular foot, head with mouth and sense organs, and a visceral mass containing most of the gut and the heart, gonads, and kidney. Part of the body is enclosed in a mantle formed of a fold of the body wall. The mantle encloses a space known as the mantle cavity which is filled with water or air and in which the respiratory organs, anus, nephridiopore(s) and gonopore(s) are located. The coelom is reduced to small spaces including the pericardial cavity and gonocoel. The well-developed blood vascular system consists of the heart and vessels leading to a spacious hemocoel in which most of the viscera are located. The kidneys are large metanephridia. Molluscs may be either gonochoristic or hermaphroditic. Spiral cleavage produces a characteristic veliger larva in most groups unless it is suppressed in favor of direct development or another larva. Molluscs are well represented in marine, freshwater, and terrestrial habitats. Bivalvia Bivalvia is a large class of molluscs whose shell is divided into right and left portions. There is usually a crystalline style but never a radula. Bivalves are flattened from side to side and the head is reduced and bears no special sense organs. The large mantle cavity is located on the sides and contains the large gills. -
Shubuta, Mississippi: Home of the Red Artesian Well
CHAPTER 1 Shubuta, Mississippi: Home of the Red Artesian Well Migration fever hit Shubuta, Mississippi, and its surrounding ar- eas in the beginning of the twentieth century and black families began traveling north to fi nd a better life. In fact, so many blacks began leaving Shubuta that the local paper, The Mississippi Mes- senger, published the article, “Negroes Should Remain in South,” on 5 September 1919.1 The article stated that blacks were not treated poorly and good employment was available. “They [three black surveyors from Chicago] declare they can now recommend that Negroes come south to fi nd work; they assert they found no basis for the northern allegations that Mississippi would bear such a libelous epithet; they investigated farm labor conditions near a dozen cities and at the Archman convict farms; they discovered that Negroes could walk on the sidewalks of Mississippi cities without being lynched. .”2 Despite this article and these supposed adequate conditions, African Americans wanted to leave Shubuta because of poor employment opportunities, poor educational facili- ties, and discrimination. These migrants left home seeking a better life for themselves and their families. A large number of the black migrants who left the Shubuta area moved to Albany, New York, during the 1930s and 1940s when Louis W. Parson moved north in 9 © 2008 State University of New York Press, Albany 10 SOUTHERN LIFE, NORTHERN CITY 1927 and began returning by car to drive Mississippi blacks north. News of Albany spread by word of mouth, and blacks also left the area by train and bus. -
Spatial Variability in Recruitment of an Infaunal Bivalve
Spatial Variability in Recruitment of an Infaunal Bivalve: Experimental Effects of Predator Exclusion on the Softshell Clam (Mya arenaria L.) along Three Tidal Estuaries in Southern Maine, USA Author(s): Brian F. Beal, Chad R. Coffin, Sara F. Randall, Clint A. Goodenow Jr., Kyle E. Pepperman, Bennett W. Ellis, Cody B. Jourdet and George C. Protopopescu Source: Journal of Shellfish Research, 37(1):1-27. Published By: National Shellfisheries Association https://doi.org/10.2983/035.037.0101 URL: http://www.bioone.org/doi/full/10.2983/035.037.0101 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 37, No. 1, 1–27, 2018. SPATIAL VARIABILITY IN RECRUITMENT OF AN INFAUNAL BIVALVE: EXPERIMENTAL EFFECTS OF PREDATOR EXCLUSION ON THE SOFTSHELL CLAM (MYA ARENARIA L.) ALONG THREE TIDAL ESTUARIES IN SOUTHERN MAINE, USA 1,2 3 2 3 BRIAN F. -
SEISMIC ANALYSIS of SLIDING STRUCTURES BROCHARD D.- GANTENBEIN F. CEA Centre D'etudes Nucléaires De Saclay, 91
n 9 COMMISSARIAT A L'ENERGIE ATOMIQUE CENTRE D1ETUDES NUCLEAIRES DE 5ACLAY CEA-CONF —9990 Service de Documentation F9II9I GIF SUR YVETTE CEDEX Rl SEISMIC ANALYSIS OF SLIDING STRUCTURES BROCHARD D.- GANTENBEIN F. CEA Centre d'Etudes Nucléaires de Saclay, 91 - Gif-sur-Yvette (FR). Dept. d'Etudes Mécaniques et Thermiques Communication présentée à : SMIRT 10.' International Conference on Structural Mechanics in Reactor Technology Anaheim, CA (US) 14-18 Aug 1989 SEISHIC ANALYSIS OF SLIDING STRUCTURES D. Brochard, F. Gantenbein C.E.A.-C.E.N. Saclay - DEHT/SMTS/EHSI 91191 Gif sur Yvette Cedex 1. INTRODUCTION To lirait the seism effects, structures may be base isolated. A sliding system located between the structure and the support allows differential motion between them. The aim of this paper is the presentation of the method to calculate the res- ponse of the structure when the structure is represented by its elgenmodes, and the sliding phenomenon by the Coulomb friction model. Finally, an application to a simple structure shows the influence on the response of the main parameters (friction coefficient, stiffness,...). 2. COULOMB FRICTION HODEL Let us consider a stiff mass, layed on an horizontal support and submitted to an external force Fe (parallel to the support). When Fg is smaller than a limit force ? p there is no differential motion between the support and the mass and the friction force balances the external force. The limit force is written: Fj1 = \x Fn where \i is the friction coefficient and Fn the modulus of the normal force applied by the mass to the support (in this case, Fn is equal to the weight of the mass). -
PRELIMINARY GEOTECHNICAL EVALUATION WASHINGTON PARK RESERVOIR IMPROVEMENTS Portland, Oregon
APPENDIX H PRELIMINARY GEOTECHNICAL EVALUATION WASHINGTON PARK RESERVOIR IMPROVEMENTS Portland, Oregon REPORT July 2011 CORNFORTH Black & Veatch CONSULTANTS APPENDIX H Report to: Portland Water Bureau 1120 SW 5th Avenue Portland, Oregon 97204-1926 and Black and Veatch 5885 Meadows Road, Suite 700 Lake Oswego, Oregon 97035 PRELIMINARY GEOTECHNICAL EVALUATION WASHINGTON PARK RESERVOIR IMPROVEMENTS PORTLAND, OREGON July 2011 Submitted by: Cornforth Consultants, Inc. 10250 SW Greenburg Road, Suite 111 Portland, OR 97223 APPENDIX H 2114 TABLE OF CONTENTS Page EXECUTIVE SUMMARY .................................................................................................................. iv 1. INTRODUCTION .................................................................................................................... 1 1.1 General .......................................................................................................................... 1 1.2 Site and Project Background ......................................................................................... 1 1.3 Scope of Work .............................................................................................................. 1 2. PROJECT DESCRIPTION ...................................................................................................... 3 2.1 General .......................................................................................................................... 3 2.2 Companion Studies ...................................................................................................... -
Application of Response Spectrum Analysis in Historical Buildings
Transactions on the Built Environment vol 15, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509 Application of response spectrum analysis in historical buildings M.E. Stavroulaki, B. Leftheris Institute of Applied Mechanics, Department of Engineering Greece Abstract The basic concepts and assumptions used in the response spectrum analysis method is reviewed in this paper with respect to its application in historical buildings. More specifically, the methodology of modeling and the applica- tion of the response spectrum analysis is described and discussed through our work with the Lighthouse at the Venetian Harbor of Chania. 1 Introduction The main cause of damage in building structures during an earthquake is usually their response to ground induced motions. In order to evaluate the behaviour of the structure for this type of loading condition, the princip- les of structural dynamics must be applied to determine the stresses and deflections generated in the structure. The dynamic characteristics of the building is established by its natu- ral frequencies, modes and damping: the analysis is based on linear-elastic behaviour of materials and the ground input motion is a smoothed de- sign spectrum in order to calculate the maximum values of the structural response. In this work we describe the application of response spectrum analysis to the Lighthouse at the Venetian Harbour of Chania. We use the example, however, to discuss the requirements of response spectrum analy- sis for historical buildings in general. The Lighthouse is a masonry structure built by the Egyptians in 1838. Transactions on the Built Environment vol 15, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509 94 Dynamics, Repairs & Restoration 2 Finite Element modeling of masonry structures The finite element method of analysis requires the selection of an appro- priate model that would sufficiently represent the real structure. -
Lecture 18: Earthquake-Response Spectra
53/58:153 Lecture 18 Fundamental of Vibration ______________________________________________________________________________ Lecture 18: Earthquake-Response Spectra Reading materials: Sections 6.4, and 6.5 1. Introduction The most direct description of an earthquake motion in time domain is provided by accelerograms that are recorded by instruments called Strong Motion Accelerographs. The accelerograph records three orthogonal components of ground acceleration at a certain location. The peak ground acceleration, duration, and frequency content of earthquake can be obtained from an accelerograms. An accelerogram can be integrated to obtain the time variations of the ground velocity and ground displacement. A response spectrum is used to provide the most descriptive representation of the influence of a given earthquake on a structure or machine. - 1 - 53/58:153 Lecture 18 Fundamental of Vibration ______________________________________________________________________________ 2. Structures subject to earthquake It is similar to a vehicle moving on the ground. In both cases there is relative movement between the vibrating system (structures or machines) and the ground. ug(t) is the ground motion, while u(t) is the motion of the mass relative to ground. If the ground acceleration from an earthquake is known, the response of the structure can be computed via using the Newmark’s method. Example: determine the following structure’s response to the 1940 El Centro earthquake. 2% damping. - 2 - 53/58:153 Lecture 18 Fundamental of Vibration ______________________________________________________________________________ 1940 EL Centro, CA earthquake Only the bracing members resist the lateral load. Considering only the tension brace. - 3 - 53/58:153 Lecture 18 Fundamental of Vibration ______________________________________________________________________________ Neglecting the self weight of the members, the mass of the equivalent spring-mass system is equal to the total dead load. -
A High-Resolution Storm Surge Model for the Pascagoula Region, Mississippi
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2008 A High-resolution Storm Surge Model For The Pascagoula Region, Mississippi Naeko Takahashi University of Central Florida Part of the Civil Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Takahashi, Naeko, "A High-resolution Storm Surge Model For The Pascagoula Region, Mississippi" (2008). Electronic Theses and Dissertations, 2004-2019. 3481. https://stars.library.ucf.edu/etd/3481 A HIGH-RESOLUTION STORM SURGE MODEL FOR THE PASCAGOULA REGION, MISSISSIPPI by NAEKO TAKAHASHI B.S. Chuo University, JAPAN, 2001 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Civil, Environmental and Construction Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Fall Term 2008 © 2008 Naeko Takahashi ii ABSTRACT The city of Pascagoula and its coastal areas along the United States Gulf Coast have experienced many catastrophic hurricanes and were devastated by high storm surges caused by Hurricane Katrina (August 23 to 30, 2005). The National Hurricane Center reported high water marks exceeding 6 meters near the port of Pascagoula with a near 10- meter high water mark recorded near the Hurricane Katrina landfall location in Waveland, MS. -
Multiple-Support Response Spectrum Analysis of the Golden Gate Bridge
"11111111111111111111111111111 PB93-221752 REPORT NO. UCB/EERC-93/05 EARTHQUAKE ENGINEERING RESEARCH CENTER MAY 1993 MULTIPLE-SUPPORT RESPONSE SPECTRUM ANALYSIS OF THE GOLDEN GATE BRIDGE by YUTAKA NAKAMURA ARMEN DER KIUREGHIAN DAVID L1U Report to the National Science Foundation -t~.l& T~ .- COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT BERKELEY Reproduced by: National Tectmcial Information Servjce u.s. Department ofComnrrce Springfield, VA 22161 For sale by the National Technical Information Service, U.S. Department of Commerce, Spring field, Virginia 22161 See back of report for up to date listing of EERC reports. DISCLAIMER Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Earthquake Engineering Research Center, University of California at Berkeley. ,..", -101~ ~_ -------,r------------------,--------r-- - REPORT DOCUMENTATION IL REPORT NO. I%. 3. 1111111111111111111111111111111 PAGE NS F/ ENG-93001 PB93-221752 --- :.. Title ancl Subtitte 50. Report Data "Multiple-Support Response Spectrum Anaiysis of the Golden Gate May 1993 Bridge" T .............~\--------------------------------·~-L-....-fOi-"olnc--o-rp-n-ization--Rept.--No-.---t Yutaka Nakamura, Armen Der Kiureghian, and David Liu UCB/EERC~93/05 Earthquake Engineering Research Center University of California, Berkeley u. eomr.ct(Cl or Gnll.t(G) ...... 1301 So. 46th Street (C) Richmond, Calif. 94804 (G) BCS-9011112 I%. Sponsorinc Orpnlzatioft N_ and Add..... 13. Type 01 R~ & Period ea.-.d National Science Foundation 1800 G.Street, N.W. Washington, D.C. 20550 15. Su~ryNot.. 16. Abattac:t (Umlt: 200 wonts) The newly developed Multiple-Support Response Spectrum (MSRS) method is reviewed and applied to analysis of the Golden Gate Bridge. -
Chapter 12 – Geotechnical Seismic Analysis
Chapter 12 GEOTECHNICAL SEISMIC ANALYSIS GEOTECHNICAL DESIGN MANUAL January 2019 Geotechnical Design Manual GEOTECHNICAL SEISMIC ANALYSIS Table of Contents Section Page 12.1 Introduction ..................................................................................................... 12-1 12.2 Geotechnical Seismic Analysis ....................................................................... 12-1 12.3 Dynamic Soil Properties.................................................................................. 12-2 12.3.1 Soil Properties ..................................................................................... 12-2 12.3.2 Site Stiffness ....................................................................................... 12-2 12.3.3 Equivalent Uniform Soil Profile Period and Stiffness ........................... 12-3 12.3.4 V*s,H Variation Along a Project Site ...................................................... 12-5 12.3.5 South Carolina Reference V*s,H ........................................................... 12-6 12.4 Project Site Classification ............................................................................... 12-7 12.5 Depth-To-Motion Effects On Site Class and Site Factors ................................ 12-9 12.6 SC Seismic Hazard Analysis .......................................................................... 12-9 12.7 Acceleration Response Spectrum ................................................................. 12-10 12.7.1 Effects of Rock Stiffness WNA vs. ENA ...........................................