Nutritional Composition, Bioactive Compounds and Health-Beneficial Properties of Black Sea Shellfish

Total Page:16

File Type:pdf, Size:1020Kb

Nutritional Composition, Bioactive Compounds and Health-Beneficial Properties of Black Sea Shellfish https://doi.org/10.5272/jimab.2020263.3293 Journal of IMAB Journal of IMAB - Annual Proceeding (Scientific Papers). 2020 Jul-Sep;26(3) ISSN: 1312-773X https://www.journal-imab-bg.org Review article NUTRITIONAL COMPOSITION, BIOACTIVE COMPOUNDS AND HEALTH-BENEFICIAL PROPERTIES OF BLACK SEA SHELLFISH Veselina Panayotova1, Albena Merdzhanova1, Diana A. Dobreva1, Kameliya Bratoeva2, Lubomir Makedonski1 1) Department of Chemistry, Faculty of Pharmacy, Medical University of Varna, Bulgaria. 2) Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, Bulgaria. ABSTRACT the quality of shellfish as nutraceuticals. Contemporary stud- Marine bivalves are characterized as high nutritional, ies show the potential of bivalves as a very good source of easily digestible food, low calories but high in proteins. antioxidants (phenolic compounds) exhibiting antimicro- The activity of biologically active substances in shellfish bial activity. from the Black Sea region is very poorly studied. A small Specific information on the nutrient content of re- number of publications devoted to the functional activity gional foods, especially seafood, is on the basis of a number of tissue and/or extracts from Black Sea shellfish are found of government food strategies and policies. Data may help in the literature. The main scientific objective of the project specialized public authorities and organizations with re- is to study the quality and functional potential of three spe- gard to food quality and related costs; developing adequate cies of Black Sea bivalves: black mussel (Mytilus gallo- strategies and policies aiming to improve the nutritional provincialis), striped venus clam (Chamelea gallina) and literacy of the population; and solve issues of malnutrition wedge clam (Donax trunculus). Seafood nutrition data is and prevention of socially significant diseases (chronic non- needed to assess their contribution to nutrient intake of in- communicable diseases, NCD) with the help of wholesome dividuals and populations but also to the development of foods, such as shellfish. According to the World Health Or- nutrition guidelines as well as for labelling purposes. Spe- ganization (WHO), unhealthy eating patterns are among the cific information on the nutrient content of regional foods, major risk factors for cardiovascular disease (CVD). CVDs including seafood, is the basis of a number of food strate- are among the main causes of morbidity and mortality of the gies and policies, and increasingly in the fields of agricul- population in developed countries. The spread of the NCD ture, fisheries and aquaculture. In many cases, this data may is epidemic (CVD in particular), which increases their nega- help specialized public authorities and public organizations tive impact on the socio-economic development of socie- with regard to food quality and related costs, as well as de- ties [1]. In 2010 CVDs account for 67.5% of the deaths in veloping adequate strategies and policies aiming to improve Bulgaria. In 2013, the Council of Ministers of the Republic the nutritional literacy of the population and solve issues of of Bulgaria adopted a National Program for Prevention of malnutrition and prevention of socially significant diseases Chronic Non-Communicable Diseases 2014-2020. There are (chronic non-communicable diseases, CND) with the help serious nutritional challenges in our country which give of wholesome foods, such as bivalves. rise to the need to undertake activities to support a healthy diet and ensure safe and healthy food for the entire popula- Keywords: Black Sea shellfish, functional potential, tion. nutrition Shellfish are used mainly as food, but there are nu- merous products sold worldwide as high-value nutraceuticals BACKGROUND [2]. Studies have shown that lipid extracts and freeze-dried Marine shellfish are characterized as easily digest- mussel powder of mussels have numerous health benefits, ible food, low in calories, but nutrient-dense. According to including the ability to reduce inflammation [3-7]. the Food and Agriculture Organization (FAO), the absorp- In Bulgaria, there are three commercial shellfish spe- tion coefficients of proteins and lipids contained in the ed- cies – black mussel (Mytilus galloprovincialis), striped venus ible tissue of shellfish are above 0.9, which indicates their clam (Chamelea gallina) and wedge clam (Donax trunculus). high nutritional value. Although the lipid content is low, so These Black Sea species can be valuable sources of biologi- far, this group of primary metabolites has shown the highest cally active substances for Bulgarian consumers due to the potential to develop commercially significant functional fact that they are sustainable species applicable to aqua- foods and nutritional supplements. The predominant polar culture. The aim of this study is to determine the quality lipids rich in polyunsaturated fatty acids (PUFA) increase and functional potential of three species of Black Sea J of IMAB. 2020 Jul-Sep;26(3) https://www.journal-imab-bg.org 3293 bivalves: black mussel (Mytilus galloprovincialis), white information on the chemical composition of Chamelea sand clams (Chamelea gallina and Donax trunculus). gallina and Donax trunculus from the Black Sea which raises the need for systematic studies on their quality as food al- BLACK SEA SHELLFISH ternatives of black mussel and species rich in functionally Mytilus galloprovincialis active compounds with high potential for cultivation in the The Mediterranean mussel Mytilus galloprovincialis Black Sea waters. is a species of great economic importance in the Black Sea region. According to the Executive Agency for Fisheries PRELIMINARY RESULTS and Aquaculture (EAFA), Mytilus galloprovincialis is the Proximate composition only representative of the Phylum Mollusca, subjected to Table 1 presents the proximate composition (proteins, the aquaculture sector in Bulgaria. The number of existing carbohydrates and lipids) of the studied species. Proteins Black Sea mussel farms is 45 with a total production of were the major macronutrients in investigated Black Sea 2520 tons in 2014 [8]. During the last two years the chemi- shellfish. The black mussel showed two folds higher protein cal composition (proteins, lipids and carbohydrates), the content, compared to the white clams. Chamelea gallina fatty acid profile, the content of fat-soluble vitamins (A, E showed the lowest carbohydrate and highest lipid content. and D3), cholesterol and carotenoids of cultivated black Based on the reported protein levels, all species can be clas- mussel from the Bulgarian coast were studied. The sea- sified as “high in protein” [18]. Some authors have sug- sonal changes for the described compounds have been fol- gested that protein content is correlated with mussels’ re- lowed, and it has been found that this species has valuable productive cycles and environmental conditions [19]. M. nutritional qualities and is recommended to be included galloprovincialis from Bulgarian coast showed the differ- in various diets. It is estimated that 100 g of Mytilus gallo- ent protein levels [10] compared to the same species inhab- provincialis delivers more than 150% of the recommended iting the Romanian and Turkish parts of the Black Sea [20, daily intake (RDI) of long-chain omega-3 PUFA (0.97g per 21]. Both lipids and carbohydrates are energy supplying 100g of edible portion), more than 55% of vitamin D3 RDI macronutrients, therefore their contents are related mainly and high amounts of β-carotene and astaxanthin [9-12]. to shellfish reproductive cycle. Their composition varies significantly throughout the year and in different habitats. Chamelea gallina This explains the differences in carbohydrate contents re- Striped venus clam (Chamelea gallina) is widespread ported for mussels from different parts of the Black Sea [20, in the Mediterranean basin and also abundant throughout 21]. On the other hand, scientific literature lacks informa- the Aegean, Black and Azov Seas [13]. There are only a few tion on the other two species - Chamelea gallina and Donax studies on the chemical composition of this species har- trunculus, in terms of their chemical composition [14, 17]. vested in the Adriatic [14] and the Marmara Sea [15]. Lipids are minor constituents of shellfish meat. Their amount and composition are strongly species specific, but also in- Donax trunculus fluenced by different factors acting simultaneously and pro- Recently more and more attention has been paid to voking temporary changes in lipid content. Despite that, wedge clam (Donax trunculus) along the Bulgarian Black presented results characterize edible Black Sea shellfish as Sea coast. The species is characterized as a very good source species with low lipid content. of protein and PUFA [16, 17]. Yet, literature data lack of Table 1. Proximate composition of Mytilus galloprovincialis, Chamelea gallina and Donax trunculus Shellfish species Proteins Carbohydrates Lipids Reference Mytilus galloprovincialis 17.4–19.9 g/100g ww 2.0–2.7 g/100g ww 1.4–2.9 g/100g ww [10] Chamelea gallina 8.51–9.7 g/100g ww 0.7–1.6 g/100g ww 2.2–5.0 g/100g ww [14] Donax trunculus 8.13–10.61% of ww 2.31–3.18% of ww 0.69–1.33% of ww [15] Fatty acid composition the studied species is comparably small. However, lipid ex- Until now, lipids are the primary metabolites from tracts of Mytilus species exhibited anti-inflammatory [5], shellfish that have shown the highest potential for com- anti-tumour effects [6] and wound
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Chamelea Gallina in the Coastal Waters of the Anapa Bay
    Oceanologia (2019) 61, 471—483 Available online at www.sciencedirect.com ScienceDirect j ournal homepage: www.journals.elsevier.com/oceanologia/ ORIGINAL RESEARCH ARTICLE Chamelea gallina in the coastal waters of the Anapa bay bar (the Black Sea) as a carbonate sediment producer a, b Alisa R. Kosyan *, Boris V. Divinsky a A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia b P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia Received 22 October 2018; accepted 26 April 2019 Available online 16 May 2019 KEYWORDS Summary The paper presents preliminary results of monitoring the population of the bivalve Population; Chamelea gallina, which is the main source of biogenic carbonates for the Anapa bay bar beaches Biomass; (the Black Sea). It is shown that by 2017, the biomass of the clams decreased more than twice compared to 2010, but began to increase in 2018. The average sizes of C. gallina are clearly Shell length; Age; divided in terms “year” — “section” — “age”. At the same time, interannual variations of the average size are very strong in all age groups. The average shell length of C. gallina significantly Rapana venosa; increased in 2018 compared to 2016, and especially — to 2017. This may be caused by the Black Sea population decline of the predator Rapana venosa feeding on clams. Geographic differences in the shell length between sections are not directly related to the distribution of biogenic elements (nitrogen and phosphorus). The differences in longevity and shell size between C. gallina from the Anapa region and distant populations from the other parts of the distribution area are likely related to its significant negative correlation with the growth rate, which in turn negatively correlates with latitude.
    [Show full text]
  • Decapoda, Brachyura
    APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA de Decápodos Braquiuros de la Península Ibérica bérica I enínsula P raquiuros de la raquiuros B ecápodos D de APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA LA DE IDENTIFICACIÓN EN LA Y MOLECULARES MORFOLÓGICAS TÉCNICAS DE APLICACIÓN Herrero - MEGALOPA “big eyes” Leach 1793 Elena Marco Elena Marco-Herrero Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 Tesis Doctoral, Valencia 2015 Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA DE DECÁPODOS BRAQUIUROS DE LA PENÍNSULA IBÉRICA TESIS DOCTORAL Elena Marco-Herrero Valencia, septiembre 2015 Directores José Antonio Cuesta Mariscal / Ferran Palero Pastor Tutor Álvaro Peña Cantero Als naninets AGRADECIMIENTOS-AGRAÏMENTS Colaboración y ayuda prestada por diferentes instituciones: - Ministerio de Ciencia e Innovación (actual Ministerio de Economía y Competitividad) por la concesión de una Beca de Formación de Personal Investigador FPI (BES-2010- 033297) en el marco del proyecto: Aplicación de técnicas morfológicas y moleculares en la identificación de estados larvarios planctónicos de decápodos braquiuros ibéricos (CGL2009-11225) - Departamento de Ecología y Gestión Costera del Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) - Club Náutico del Puerto de Santa María - Centro Andaluz de Ciencias y Tecnologías Marinas (CACYTMAR) - Instituto Español de Oceanografía (IEO), Centros de Mallorca y Cádiz - Institut de Ciències del Mar (ICM-CSIC) de Barcelona - Institut de Recerca i Tecnología Agroalimentàries (IRTA) de Tarragona - Centre d’Estudis Avançats de Blanes (CEAB) de Girona - Universidad de Málaga - Natural History Museum of London - Stazione Zoologica Anton Dohrn di Napoli (SZN) - Universitat de Barcelona AGRAÏSC – AGRADEZCO En primer lugar quisiera agradecer a mis directores, el Dr.
    [Show full text]
  • Alien Species in the Mediterranean Sea by 2010
    Mediterranean Marine Science Review Article Indexed in WoS (Web of Science, ISI Thomson) The journal is available on line at http://www.medit-mar-sc.net Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution A. ZENETOS 1, S. GOFAS 2, M. VERLAQUE 3, M.E. INAR 4, J.E. GARCI’A RASO 5, C.N. BIANCHI 6, C. MORRI 6, E. AZZURRO 7, M. BILECENOGLU 8, C. FROGLIA 9, I. SIOKOU 10 , D. VIOLANTI 11 , A. SFRISO 12 , G. SAN MART N 13 , A. GIANGRANDE 14 , T. KATA AN 4, E. BALLESTEROS 15 , A. RAMOS-ESPLA ’16 , F. MASTROTOTARO 17 , O. OCA A 18 , A. ZINGONE 19 , M.C. GAMBI 19 and N. STREFTARIS 10 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, P.O. Box 712, 19013 Anavissos, Hellas 2 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 3 UMR 6540, DIMAR, COM, CNRS, Université de la Méditerranée, France 4 Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 5 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 6 DipTeRis (Dipartimento per lo studio del Territorio e della sue Risorse), University of Genoa, Corso Europa 26, 16132 Genova, Italy 7 Institut de Ciències del Mar (CSIC) Passeig Mar tim de la Barceloneta, 37-49, E-08003 Barcelona, Spain 8 Adnan Menderes University, Faculty of Arts & Sciences, Department of Biology, 09010 Aydin, Turkey 9 c\o CNR-ISMAR, Sede Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy 10 Institute of Oceanography, Hellenic Centre for Marine Research, P.O.
    [Show full text]
  • Chamelea Gallina) Fishery
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 Dredge selectivity in a Mediterranean striped venus clam (Chamelea gallina) fishery Petetta, Andrea; Herrmann, Bent; Virgili, Massimo; Bargione, Giada; Vasapollo, Claudio; Lucchetti, Alessandro Published in: Fisheries Research Link to article, DOI: 10.1016/j.fishres.2021.105895 Publication date: 2021 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Petetta, A., Herrmann, B., Virgili, M., Bargione, G., Vasapollo, C., & Lucchetti, A. (2021). Dredge selectivity in a Mediterranean striped venus clam (Chamelea gallina) fishery. Fisheries Research, 238, [105895]. https://doi.org/10.1016/j.fishres.2021.105895 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Fisheries Research 238 (2021) 105895 Contents lists available at ScienceDirect
    [Show full text]
  • Environmental Heterogeneity and Benthic Macroinvertebrate Guilds in Italian Lagoons Alberto Basset, Nicola Galuppo & Letizia Sabetta
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ESE - Salento University Publishing Transitional Waters Bulletin TWB, Transit. Waters Bull. 1(2006), 48-63 ISSN 1825-229X, DOI 10.1285/i1825226Xv1n1p48 http://siba2.unile.it/ese/twb Environmental heterogeneity and benthic macroinvertebrate guilds in italian lagoons Alberto Basset, Nicola Galuppo & Letizia Sabetta Department of Biological and Environmental Sciences and Technologies University of Salento S.P. Lecce-Monteroni 73100 Lecce RESEARCH ARTICLE ITALY Abstract 1 - Lagoons are ecotones between freshwater, marine and terrestrial biotopes, characterized by internal ecosystem heterogeneity, due to patchy spatial and temporal distribution of biotic and abiotic components, and inter-ecosystem heterogeneity, due to the various terrestrial-freshwater and freshwater-marine interfaces. 2 - Here, we carried out an analysis of environmental heterogeneity and benthic macro-invertebrate guilds in a sample of 26 Italian lagoons based on literature produced over a 25 year period.. 3 - In all, 944 taxonomic units, belonging to 13 phyla, 106 orders and 343 families, were recorded. Most species had a very restricted geographic distribution range. 75% of the macroinvertebrate taxa were observed in less than three of the twenty-six lagoons considered. 4 - Similarity among macroinvertebrate guilds in lagoon ecosystems was remarkably low, ranging from 10.5%±7.5% to 34.2%±14.4% depending on the level of taxonomic resolution. 5 - Taxonomic heterogeneity was due to both differences in species richness and to differences in species composition: width of seaward outlet, lagoon surface area and water salinity were the most important factors affecting species richness, together accounting for up to 75% of observed inter-lagoon heterogeneity, while distance between lagoons was the most significant factor affecting similarity of species composition.
    [Show full text]
  • The Clam Fisheries Sector in the Eu – the Adriatic Sea Case
    DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES FISHERIES RESEARCH FOR PECH COMMITTEE - THE CLAM FISHERIES SECTOR IN THE EU - THE ADRIATIC SEA CASE STUDY This document was requested by the European Parliament's Committee on Fisheries. AUTHORS Giuseppe Scarcella Alicia Mosteiro Cabanelas RESPONSIBLE ADMINISTRATOR Carmen-Paz Marti Policy Department B: Structural and Cohesion Policies European Parliament B-1047 Brussels E-mail: [email protected] EDITORIAL ASSISTANCE Lyna Pärt LINGUISTIC VERSIONS Original: EN ABOUT THE PUBLISHER To contact the Policy Department or to subscribe to its monthly newsletter please write to: [email protected] Manuscript completed in January 2016 © European Union, 2016 This document is available on the Internet at: http://www.europarl.europa.eu/supporting-analyses Print ISBN 978-92-823-8614-9 doi:10.2861/43158 QA-02-16-093-EN-C PDF ISBN 978-92-823-8613-2 doi:10.2861/401646 QA-02-16-093-EN-N DISCLAIMER The opinions expressed in this document are the sole responsibility of the author and do not necessarily represent the official position of the European Parliament. Reproduction and translation for non-commercial purposes are authorized, provided the source is acknowledged and the publisher is given prior notice and sent a copy. DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES FISHERIES RESEARCH FOR PECH COMMITTEE - THE CLAM FISHERIES SECTOR IN THE EU - THE ADRIATIC SEA CASE STUDY Abstract Clams are an important fishery resource in the European Union. The Adriatic Sea clam fishery shows a declining trend and is losing market share.
    [Show full text]
  • HELCOM Red List
    BIOTOPE INFORMATION SHEET English name: Code in HELCOM HUB: Baltic aphotic sand dominated by striped venus AB.J2K7 (Chamelea gallina) Characteristic species: Chamelea gallina Past and Current Threats (Habitat directive Future Threats (Habitat directive article 17): article 17): Red List Criteria: Confidence of threat HELCOM Red List NT A1 assessment: L Category: Near Threatened Previous HELCOM Red List threat assessments BSEP 75 (1998): BSEP 113 (HELCOM 2007): “3” Endangered 2.5 Sandy bottoms 2.5.1 Aphotic zone Greater concern stated by: Habitat and Ecology The biotope occurs in the aphotic zone on bottoms with at least 90% coverage of sand. The biomass is dominated by infauna and the clam Chamelea gallina constitutes at least 50% of the biomass. Chamelea gallina can live both buried in sand (Carter 2008) or on the sediment surface. The clam is a filter feeder and does not burry very deep into the sediment. The clam requires clean sandy substrates and can reach an age of over 10 years (Carter 2008). © HELCOM Red List Biotope Expert Group 2013 www.helcom.fi > Baltic Sea trends > Biodiversity > Red List of biotopes BIOTOPE INFORMATION SHEET Distribution and status in the Baltic Sea region The biotope is known to occur in the northern Kattegat in Swedish and Danish waters. The distribution map indicates the area in the 100 x 100 km grid where biotope is known to occur. © HELCOM Red List Biotope Expert Group 2013 www.helcom.fi > Baltic Sea trends > Biodiversity > Red List of biotopes BIOTOPE INFORMATION SHEET Description of Major threats Globally the clam Chamelea gallina is commercially fished with dredges, hackles and occasionally with bottom trawls (FAO).
    [Show full text]
  • Chamelea Gallina) Fishery
    Downloaded from orbit.dtu.dk on: Oct 07, 2021 Dredge selectivity in a Mediterranean striped venus clam (Chamelea gallina) fishery Petetta, Andrea; Herrmann, Bent; Virgili, Massimo; Bargione, Giada; Vasapollo, Claudio; Lucchetti, Alessandro Published in: Fisheries Research Link to article, DOI: 10.1016/j.fishres.2021.105895 Publication date: 2021 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Petetta, A., Herrmann, B., Virgili, M., Bargione, G., Vasapollo, C., & Lucchetti, A. (2021). Dredge selectivity in a Mediterranean striped venus clam (Chamelea gallina) fishery. Fisheries Research, 238, [105895]. https://doi.org/10.1016/j.fishres.2021.105895 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Fisheries Research 238 (2021) 105895 Contents lists available at ScienceDirect
    [Show full text]
  • New Data on Perkinsus Mediterraneus in the Balearic Archipelago: Locations and Affected Species
    Vol. 112: 69–82, 2014 DISEASES OF AQUATIC ORGANISMS Published November 13 doi: 10.3354/dao02795 Dis Aquat Org New data on Perkinsus mediterraneus in the Balearic Archipelago: locations and affected species J. M. Valencia1, M. Bassitta2, A. Picornell2, C. Ramon2, J. A. Castro2,* 1Laboratori d’Investigacions Marines i Aqüicultura (LIMIA), Av. Ingeniero Gabriel Roca, 69, Port d’Andratx, Illes Balears, 07158, Spain 2Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears, Campus de la UIB, Palma de Mallorca, Illes Balears, 07122, Spain ABSTRACT: Perkinsus mediterraneus, a protozoan parasite that can cause perkinsosis (marine mollusc disease), was first detected in oysters Ostrea edulis from Mahon (Minorca, Balearic Islands, Spain) in 2004. Several years later it was also found in Andratx Harbour (Majorca, Balearic Islands) and in the Gulf of Manfredonia (Adriatic coast of Italy) in oyster populations. Since 2007, Perkinsus surveys have been conducted in different localities and shellfish species in the Balearic Archipelago. In the present work, we found P. mediterraneus in the Balearic Islands infecting oyster and other shellfish species. We describe infection with P. mediterraneus for the first time in Arca noae and Mimachlamys varia. The detection was carried out using Ray’s fluid thioglycolate medium (RFTM), histology and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methodologies. The internal transcribed spacer (ITS) region (including ITS1, 5.8S and ITS2) of P. mediterraneus ribosomal DNA was sequenced from infected bivalve gills (or from the body in Chamelea gallina) from Balearic Archipelago localities. Twelve haplotypes with a strong genetic similarity between them (97−100%) were observed in our sam- ples.
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in circalittoral coarse sand or gravel MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Heidi Tillin 2016-06-01 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/382]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tillin, H.M. 2016. [Mediomastus fragilis], [Lumbrineris] spp. and venerid bivalves in circalittoral coarse sand or gravel. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.382.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in circalittoral coarse sand or gravel - Marine Life Date: 2016-06-01 Information Network Mediomastus fragilis, Lumbrineris spp.
    [Show full text]
  • Chamelea Gallina) in Hydraulic Dredge Fsheries Giada Bargione1,2*, Andrea Petetta1,2, Claudio Vasapollo2, Massimo Virgili2 & Alessandro Lucchetti2
    www.nature.com/scientificreports OPEN Reburial potential and survivability of the striped venus clam (Chamelea gallina) in hydraulic dredge fsheries Giada Bargione1,2*, Andrea Petetta1,2, Claudio Vasapollo2, Massimo Virgili2 & Alessandro Lucchetti2 The striped venus clam (Chamelea gallina) is the main edible bivalve living in Italian waters. According to Regulation (EU) 2020/2237, undersized specimens (total length of the shell, < 22 mm) must be returned to the sea. C. gallina specimens of diferent size classes that had undergone hydraulic dredging and mechanized sorting were analysed for reburial ability in a laboratory tank and for survivability in the laboratory (135 clams, 21 days) and at sea (320 clams, 15 days). In the tank experiments, the reburial times (T50 and T90) and the upper (+) and lower (−) confdence intervals (CIs) of the whole sample were about 4 h (CI+ 4.4, CI− 3.6) and 8 h (CI+ 8.2, CI− 7.7), respectively, and were signifcantly shorter for the medium-sized clams (22–24.9 mm) than for the smallest (< 21.9 mm) and the largest (> 25 mm) specimens. For the feld survivability experiments, clams under and above the minimum conservation reference size were placed in separate metal cages. Survival rates were 94.8% and 96.2% respectively in the laboratory and at sea, without signifcant diferences between the two experiments or among size classes. These fndings conclusively demonstrate that C. gallina specimens returned to the sea have a very high survival probability and that they can contribute to mitigate the overexploitation of natural populations. Te striped venus clam (Chamelea gallina Linnaeus, 1758), an edible and commercially valuable bivalve, is an infaunal flter-feeding clam of the family Veneridae.
    [Show full text]