Biodiversity Mapping Survey/Study in Kaziranga National Park (KNP)

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity Mapping Survey/Study in Kaziranga National Park (KNP) Biodiversity Mapping Survey/Study in Kaziranga National Park (KNP) Insects Chapter Final Report Prepared by Mr. Rahul Khot Entomologist 1 1. Introduction In terrestrial ecosystems, insects play a vital function as herbivores, pollinators, predators and parasites (Seimann and Weisser 2004). Insects are considered to pollinate nearly 70% of crop plants worldwide and over 98% of trees (Klein et al. 2006). Insects inhabit every terrestrial habitat on the planet and play a major role in the evolution and maintenance of biotic communities. They are the primary pollinators of flowering plants; they are important consumers and recyclers of decaying organic matter; and they are integral components in the food-webs of vertebrates and other invertebrates. For these reasons, and many others, the study of insects and their relatives is of increasing importance as society faces increased challenges to preserve and enhance environmental quality, reduce pesticide usage, increase crop productivity, control food costs, and increase trade in the global community. The damage cause by pest species is far outweighed by the positive effects of beneficial species. Pollinators ensure the production of fruit, parasitoids and predators help control pest species, some species contain chemicals of pharmaceutical value, and a large number of species contribute to the decomposition and recycling of dead and decaying matter. The Biodiversity Strategy and Action Plan for Northeast Ecoregion states that 3,624 species of insects are recorded from the region (Tripathi and Barik 2003). Butterflies and moths are by far the best-studied invertebrate organisms in Northeast India, and the region contributes the maximum number of species for the group in the country. Knowledge of the fauna of the Eastern Himalayas Region is poor. Most of the information available is on the larger vertebrates that are easily observed and inventoried. The smaller mammals, reptiles, amphibians, and fishes have been neglected and the most abundant taxonomic group, the insects, have been virtually ignored. With the exception of a few studies that have documented the Himalayas lepidoptera (Haribal 1992, Mani 1986, Yonzon 1991), little else is available on the insect fauna of the region. The information on insect diversity of Kaziranga NP is meagre as only a few studies have been conducted so far (Singh and Varatharajan, 2013; Gogoi, 2013 and Senthilkumar 2010). 2 2. Objectives The main objectives of the KNP biodiversity mapping survey/study include but are not limited to the following: 1. Establish baseline data and survey protocols for future biodiversity monitoring; 2. Establish sound, repeatable field methods appropriate for local conditions; 3. Establish rigorous methods for collection and management of data and specimens, including the production of high quality photographic documentation with use of camera traps, analysis thereon and on-site field reconnaissance missions; 4. To bring out management planning by defining habitat preferences and distribution of a range of fauna/flora/assemblages and threats to them; 5. Identify habitats with rare, endemic and ecologically/culturally important species, guilds and assemblages; 6. Identify natural assemblages of plants/animals; 7. Provide natural history information on a range of species; 8. Capture broad season-specific behavioral pattern of species. 9. Documentation of management practices and identification of management zones, based on 5- 7 above; 10. Prepare information, data bank, especially on the importance of KNP, available for education outreach. 11. Share detailed data and information of KNP and develop stronger coordination among the Forestry Department, KNP, and FREMAA through organizing workshops. 3 3. Methods Study area: Kaziranga is located between latitudes 26°30' N and 26°45' N, and longitudes 93°08' E to 93°36' E within two districts in the Indian state of Assam—the Kaliabor subdivision of Nagaon district and the Bokakhat subdivision of Golaghat district. The park is approximately 40 km in length from east to west, and 13 km in breadth from north to south. Kaziranga covers an area of 378 km2, with approximately 51.14 km2 lost to erosion in recent years. A total addition of 429 km2 along the present boundary of the park has been made and designated with separate national park status to provide extended habitat for increasing the population of wildlife or, as a corridor for safe movement of animals to Karbi Anglong Hills. Elevation ranges from 40 m to 80 m. The park area is circumscribed by the Brahmaputra River, which forms the northern and eastern boundaries, and the Mora Diphlu, which forms the southern boundary. Other notable rivers within the park are the Diphlu and Mora Dhansiri. Kaziranga has flat expanses of fertile, alluvial soil, formed by erosion and silt deposition by the River Brahmaputra. The landscape consists of exposed sandbars, riverine flood-formed lakes known as, beels, and elevated regions known as, chapories, which provide retreats and shelter for animals during floods. Many artificial chapories have been built with the help of the Indian Army to ensure the safety of the animals. Kaziranga is one of the largest tracts of protected land in the sub-Himalayan belt. The park is located in the Indomalaya ecozone, and the dominant biomes of the region are Brahmaputra Valley semi-evergreen forests of the tropical and subtropical moist broadleaf forests biome and a frequently flooded variant of the Terai-Duar savanna and grasslands of the tropical and subtropical grasslands, savannas, and shrublands biome. Average temperature ranges from 5 to 370 C and average humidity ranges between 65% and 95%. Rainy season is May to October, and the annual rainfall is about 2500 mm. Study organisms: Butterflies are suitable for biodiversity studies, as the taxonomy, geographic distribution and status of many species are relatively well known. Further, butterflies are good biological indicators of habitat quality as well as general environmental health (Larsen1988; Kocher and Williams 2000; Sawchik et al. 2005), as many species are strictly seasonal and prefer only particular set of habitats (Kunte 1997). Butterflies may react to disturbance and change in habitat and act as an ecological indicator (MacNallyand Fleishman 2004). They may get severely affected by the environmental variations and changes in the forest structure, as they are closely dependent on plants (Pollard 1991; Blair 1999). Thus minor changes in their habitat may lead to either migration or local extinction (Blair 1999; Kunte 1997; Mennechez et al 2003). 4 Literature review: Scientific study and documentation of Indian butterflies can be traced to the arrival of a Danish medical doctor Johann Gerhard Koenig in southern India, as early as in 1767. W.H.Evans (1932) provides an excellent scientific documentation of about 962 species/subspecies of butterflies belonging to five taxonomic families from the Assam region alone. Doubleday (1845) seems to be thefirst person to work on butterflies in the state when he worked in northern Assam covering the areas of Sadia, Jorhat and Cachar followed by Moore (1857) who worked in Abor Hills and Mishmi Hills, including Sadia.The celebrated work of Bingham 1905-1907) is also remarkable. There is renewed interest in butterflies of the Indian Region due to increased awareness among Indian citizens about butterflies, their biology and conservation issues. During recent years following workers have studies butterflies in different areas of Assam state, Bhuyan et al., 2002 (Regional Research Laboratory Campus, Jorhat, Assam); Ali et al., 2000 (Zoo-Cum- Botanicalgarden, Guwahati) Gogoi,2011 (Jeypore-Dehing forest, eastern Assam); Gogoi 2013 (Kaziranga-Karbi Anglong, upper Assam, India); Gogoi 2015 (Kaziranga-Karbi Anglong, upper Assam, India) Survey methods: During the initial plan we provided different methodologies for insect sampling as follows AREA SELECTION Study area will be divided in various strata based on natural vegetation and human disturbance. Grids will be selected randomly and number of grids selected will depend on proportion of each stratum (same as for vegetation survey). The entire grid will be sampled if it is small and accessible or random points will be selected in a grid for sampling. 5 DOCUMENTATION During the field work insects will be photographed by using SLR camera and macro-lenses for documentation and identification. SAMPLING Sampling is necessary for the qualitative and quantitative estimations of insects. It will be done by using following methods. DIRECT SEARCHING (For all insects) The insects will be searched in all suitable habitats like vegetation, leaf litter, under logs, stones, grasses as each insect needs a specific microhabitat for survival. The active search will be carried out in those microhabitats. INSECT NET (For winged insects) More active insects require more active search; particularly butterflies, moths, dragonflies and damselflies. To capture flying insect nets will be used on field. Insects are easy to catch in the early morning or cloudy conditions because their activity decreases during such conditions. SWEEP NETS (for insects present in low vegetation) Many insects like beetles, flies, grasshoppers and ants can be found on grasses. To collect these insects sweep net method is followed. This method involves passing a sweep net through the vegetation using alternative backhand and forehand strokes. After completing a series of the sweeps, insects caught in the net can
Recommended publications
  • Download Download
    PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles OPEN ACCESS online every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Communication Does the size of the butterfly enhance detection? Factors influencing butterfly detection in species inventory surveys Anju Velayudhan, Ashokkumar Mohanarangan, George Chandy & S. Biju 26 March 2021 | Vol. 13 | No. 3 | Pages: 17950–17962 DOI: 10.11609/jot.6596.13.3.17950-17962 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners.
    [Show full text]
  • Arthropod Diversity in Necrotic Tissue of Three Species of Columnar Cacti (Gactaceae)
    Arthropod diversity in necrotic tissue of three species of columnar cacti (Gactaceae) Sergio Castrezana,l Therese Ann Markow Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona. United States 85721 The Canadian Entomologist 133: 301 309 (2001) Abstract-We compared the insect and arachnid species found in spring and sum- mer samples of necrotic tissue of three species of columnar cacti, card6n LPachycereus pringlei (S. Watson) Britten and Rosel, organ-pipe (.Stenocereus thurberi Buxb.), and senita fLophocereus schottii (Engelm.) Britten and Rosel (all Cactaceae), endemic to the Sonoran Desert of North America. A total of 9380 arthropods belonging to 34 species, 23 families, 10 orders, and 2 classes were col- lected in 36 samples. Arthropod communities differed in composition among host cacti, as well as between seasons. These differences may be a function of variation in host characteristics, such as chemical composition and abiotic factors, such as water content or temperature. Castrezana S, Markow TA. 2001. Diversit6 des arthropodes dans les tissus n6crotiques de trois espdces de cactus colonnaires (Cactaceae). The Canadian Entomologist 133 : 301-309. R6sum6-Nous comparons les espbces d'insectes et d'arachnides trouv6es au prin- temps et )r 1'6t6 dans des 6chantillons de tissus n6crotiques de trois espdces de cactus colonnaires, le card6n fPachycereus pringlei (S. Watson) Britten et Rosel, le < tuyau d'orgue >, (Stenocereus thurberi Buxb.) et la senita lLophocereus schottii (Engelm.) Britten et Rosel, trois cactacdes end6miques du d6sert de Sonora en Am6- rique du Nord. Au total, 9380 arthropodes appartenant d 34 espdces, 23 familles, l0 ordres et 2 classes ont 6t6 r6colt6s dans 36 6chantillons.
    [Show full text]
  • Variation in Butterfly Diversity and Unique Species Richness Along
    Check List 8(3): 432-436, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution PECIES S OF Sanctuary,Variation in Tripura, butterfly northeast diversity India and unique species ISTS L richness along different habitats in Trishna Wildlife * Joydeb Majumder, Rahul Lodh and B. K. Agarwala [email protected] Tripura University, Department of Zoology, Ecology and Biodiversity Laboratories, Suryamaninagar – 799 022, Tripura, India. * Corresponding author. E-mail: Abstract: Quantification of butterfly diversity and species richness is of prime importance for evaluating the status of protected areas. Permanent line transect counts were used to record species richness and abundance of butterfly communities of different habitat types in Trishna wildlife sanctuary. A total of 1005 individuals representing 59 species in 48 genera belonging to five families were recorded in the present study. Of these, 23 species belonged to the family Nymphalidae and accounted for 38.98% of the total species and 45.20% of the total number of individuals. Mature secondary mixed moist deciduous forest showed the maximum diversity and species richness, while exotic grassland showed minimum diversity and species richness. Out of 59 species, 31 are new records for Tripura state, while 21 are unique species and nine are listed in the threatened category. This study revealed that mature secondary forests are more important for butterfly communities, while exotic grasslands have a negative impact on species composition. Introduction state of Tripura (10,490 sq km), in northeastern India In the humid tropics, due to deforestation of primary (Mandal et al.
    [Show full text]
  • Campus Environment and Biodiversity Department of Zoology Department of Botany
    A report on Campus Environment and Biodiversity Department of Zoology Department of Botany Content Pg No. 1. Introduction 1 2. Methodology 2 3. Result 3.1 Water Analysis of campus Lake 3 3.2 Soil Analysis 4 3.3 Faunal Diversity 5 i. Spider diversity 5 ii. Orthopteran diversity 7 iii. Avian diversity 8 iv. Odonate diversity 10 v. Ant diversity 13 vi. Terrestrial Beetle diversity 14 vii. Butterfly diversity 15 viii. Soil arthropod diversity 17 ix. Plankton diversity 18 x. Aquatic insect diversity 20 xi. Cockroach diversity 21 xii. Amphibia diversity 21 xiii. Moth diversity 23 xiv. Reptile diversity 24 xv. Mammal diversity 26 3.4 Floral Diversity 28 1. Introduction In its effort towards creating an eco-friendly campus, the University encourages its Faculty and Students to engage in conserving the Campus environment, its flora and fauna, through activities that include individual and collaborative research, conservation practices, activities and initiatives of the EcoClub and the University as a whole. Since 2017, the School of Life Sciences has been on a constant endeavour to create a repository of information on the biodiversity of the Campus through documentation of indigenous flora and fauna in its three Campuses, particularly the Tapesia Campus, which harbours unique species of flora and fauna. The Tapesia Campus is home to 296 species of fauna and 38 species of flora. Among the animal species, of mention is the incredible arachnid Lyrognathus saltator, the common Tarantula, which is found nesting among our vast expanse of greens. These numbers reveal the rich biodiversity of the Campus which summon for both admiration as well as protection and conservation.
    [Show full text]
  • Faunal Surveys in Unlogged Forest of the Inhutani Ii Malinau Timber Concession, East Kalimantan, Indonesia
    FAUNAL SURVEYS IN UNLOGGED FOREST OF THE INHUTANI II MALINAU TIMBER CONCESSION, EAST KALIMANTAN, INDONESIA Timothy G. O’Brien and Robert A. Fimbel with contributions from Asri Adyati Dwiyahreni Sebastian (Bas) van Balen Jaboury Ghazoul Simon Hedges Purnama Hidayat Katharine Liston Erwin Widodo Nural Winarni Wildlife Conservation Society 2300 Southern Blvd. Bronx, New York 10460 USA Table of Contents Page Table Legends Figure Legends Appendices Section 1: Study Overview Introduction Study Purpose Study Site and Design Overview Main Findings Future Activities Section 2: Mammal Surveys Methods Results and Discussion Problems and Recommendations Section 3: Bird Surveys Methods Results Discussion Problems and Recommendations Section 4: Invertebrate Surveys Methods Results and Discussion Problems and Recommendations Table Legends Table 1. Location and length of the six survey transects. Table 2. Comparison of the six transects. Table 3. Mammal species positively identified in the Bulungan Research Forest, September-October 1998. Table 4. Numbers of groups (primates) and individuals (all other mammals) recorded during transects and timed mammal searches combined (for the CL and RIL sites). Table 5. Numbers of groups (primates) and individuals (all other mammals) recorded during timed mammal searches (for the CL and RIL sites). Table 6. Numbers of groups (primates) and individuals (all other mammals) recorded during transect surveys. Table 7. Numbers of groups (primates) and individuals (all other mammals) recorded per 100 hours and per 100 km of survey effort (transect data only). Table 8. Relative abundances (proportions) of primates and squirrels in the three sites (transects and timed mammal searches combined, minimum numbers). Table 9. Similarity coefficients (modified Morista-Horn index) for number of primates and squirrels recorded in the three sites (transects plus timed mammal searches, minimum numbers).
    [Show full text]
  • Fauna of Chalcid Wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan Province, Southern Iran
    J Insect Biodivers Syst 02(1): 155–166 First Online JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/AABD72DE-6C3B-41A9-9E46-56B6015E6325 Fauna of chalcid wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan province, southern Iran Tahereh Tavakoli Roodi1, Majid Fallahzadeh1* and Hossien Lotfalizadeh2 1 Department of Entomology, Jahrom branch, Islamic Azad University, Jahrom, Iran. 2 Department of Plant Protection, East-Azarbaijan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran ABSTRACT. This paper provides data on distribution of 13 chalcid wasp species (Hymenoptera: Chalcidoidea: Chalcididae) belonging to 9 genera and Received: 30 June, 2016 three subfamilies Chalcidinae, Dirhininae and Haltichellinae from Hormozgan province, southern Iran. All collected species are new records for the province. Accepted: Two species Dirhinus excavatus Dalman, 1818 and Hockeria bifasciata Walker, 13 July, 2016 1834 are recorded from Iran for the first time. In the present study, D. excavatus Published: is a new species record for the Palaearctic region. An updated list of all known 13 July, 2016 species of Chalcididae from Iran is also included. Subject Editor: George Japoshvili Key words: Chalcididae, Hymenoptera, Iran, Fauna, Distribution, Malaise trap Citation: Tavakoli Roodi, T., Fallahzadeh, M. and Lotfalizadeh, H. 2016. Fauna of chalcid wasps (Hymenoptera: Chalcidoidea: Chalcididae) in Hormozgan province, southern Iran. Journal of Insect Biodiversity and Systematics, 2(1): 155–166. Introduction The Chalcididae are a moderately specious Coleoptera, Neuroptera and Strepsiptera family of parasitic wasps, with over 1469 (Bouček 1952; Narendran 1986; Delvare nominal species in about 90 genera, occur and Bouček 1992; Noyes 2016).
    [Show full text]
  • A Report on Butterfly Diversity in a Regenerated Forest Area in Atvan
    Journal of Entomology and Zoology Studies 2021; 9(4): 234-241 E-ISSN: 2320-7078 P-ISSN: 2349-6800 www.entomoljournal.com A report on butterfly diversity in a regenerated JEZS 2021; 9(4): 234-241 forest area in Atvan, Lonavala, Maharashtra, © 2021 JEZS Received: 14-04-2021 India Accepted: 27-05-2021 Reema Singh The Machan Resort, Private Reema Singh and Manzoor Ahmed Road, Lonavala Road, Atvan. Pune, Maharashtra, India Abstract Manzoor Ahmed Present study is based on private land that was an earlier barren land with fewer plants. The land has been CSIR- Indian Institute of converted into the forest through natural seeding and seed dispersal, and hence called as Regenerated or a Integrative Medicine (IIIM Secondary Forest. A study has been done to understand the health of this regenerated forest area, and the Jammu), India data has been compared to the nearest study area Mulshi, Maharashtra, where a comparative study has been done forming landscapes that include natural forest area or primary forest. Three different landscapes and trail along the property has been created and butterflies were documented. Butterflies act as a "model" organism to study the richness of a forest. The data was used to understand the abundance of butterflies in a regenerated forest area as well as whether the forest patch can be considered a suitable habitat for the species to thrive. A total of 90 species of butterflies were documented from the survey area where butterflies of family Nymphalidae (35) were found to be dominant, followed by Lycaenidae (18), Pereidae (14), Hesperiidae (14), Papilionidae (8), Riodinidae (1).
    [Show full text]
  • Journal of the Bombay Natural History Society
    ' <«» til 111 . JOURNAL OF THE BOMBAY NATURAL HISTORY SOCIETY Hornbill House, Shaheed Bhagat Singh Marg, Mumbai 400 001 Executive Editor Asad R. Rahmani, Ph. D Bombay Natural History Society, Mumbai Copy and Production Editor Vibhuti Dedhia, M. Sc. Editorial Board M.R. Almeida, D. Litt. T.C. Narendran, Ph. D., D. Sc. Bombay Natural History Society, Mumbai Professor, Department of Zoology, University of Calicut, Kerala Ajith Kumar, Ph. D. National Centre for Biological Sciences, GKVK Campus, Aasheesh Pittie, B. Com. Hebbal, Bangalore Bird Watchers Society of Andhra Pradesh, Hyderabad M.K. Chandrashekaran, Ph. D., D. Sc. Nehru Professor, Jawaharlal Centre G.S. Rawat, Ph. D. for Scientific Research, Advanced Wildlife Institute of India, Dehradun Bangalore K. Rema Devi, Ph. D. Anwaruddin Choudhury, Ph. D., D. Sc. Zoological Survey of India, Chennai The Rhino Foundation for Nature, Guwahati J.S. Singh, Ph. D. Indraneil Das, D. Phil. Professor, Banaras Hindu University, Varanasi Institute of Biodiversity and Environmental Conservation, Universiti Malaysia, Sarawak, Malaysia S. Subramanya, Ph. D. University of Agricultural Sciences, GKVK, P.T. Cherian, Ph. D. Hebbal, Bangalore Emeritus Scientist, Department of Zoology, University of Kerala, Trivandrum R. Sukumar, Ph. D. Professor, Centre for Ecological Sciences, Y.V. Jhala, Ph. D. Indian Institute of Science, Bangalore Wildlife Institute of India, Dehrdun K. Ullas Karanth, Ph. D. Romulus Whitaker, B Sc. Wildlife Conservation Society - India Program, Madras Reptile Park and Crocodile Bank Trust, Bangalore, Karnataka Tamil Nadu Senior Consultant Editor J.C. Daniel, M. Sc. Consultant Editors Raghunandan Chundawat, Ph. D. Wildlife Conservation Society, Bangalore Nigel Collar, Ph. D. BirdLife International, UK Rhys Green, Ph.
    [Show full text]
  • View the PDF File of the Tachinid Times, Issue 14
    The Tachinid Times ISSUE 14 February 2001 Jim O'Hara, editor Agriculture & Agri-Food Canada, Systematic Entomology Section Eastern Cereal and Oilseed Research Centre C.E.F., Ottawa, Ontario, Canada, K1A 0C6 Correspondence: [email protected] A couple of significant changes to The Tachinid the newsletter before the end of next January. This Times have taken place this year. Firstly, the newsletter newsletter appears first in hardcopy and then on the Web has moved to a new location: http://res2.agr.ca/ecorc/ some weeks later. isbi/tachinid/times/index.htm. Secondly, it is being produced as an Acrobat® PDF (Portable Document Format) Study on the phylogeny and diversity of Higher file for the first time. Though this format may be Diptera in the Northern Hemisphere (by H. Shima) inconvenient for some readers, it has a number of In 1999 I applied to the Japanese Government compelling advantages. It allows me to produce the (Ministry of Education, Science, Culture and Sports) for newsletter faster because there is a one-step conversion a 3-year research grant to fund an international project from a WordPerfect® file with embedded colour images under the general title, "Study on the Phylogeny and to a PDF file. Also, the result is a product that can be Diversity of Higher Diptera in the Northern Hemi- viewed on the Web (using the free Acrobat® Reader that sphere." Funding was approved in 2000 and the first is readily available online), downloaded from the Web, or meeting of the project team was held in Fukuoka at the distributed in hardcopy – each with exactly the same Biosystematics Laboratory of Kyushu University in late pagination and appearance.
    [Show full text]
  • Out of the Orient: Post-Tethyan Transoceanic and Trans-Arabian Routes
    Systematic Entomology Page 2 of 55 1 1 Out of the Orient: Post-Tethyan transoceanic and trans-Arabian routes 2 fostered the spread of Baorini skippers in the Afrotropics 3 4 Running title: Historical biogeography of Baorini skippers 5 6 Authors: Emmanuel F.A. Toussaint1,2*, Roger Vila3, Masaya Yago4, Hideyuki Chiba5, Andrew 7 D. Warren2, Kwaku Aduse-Poku6,7, Caroline Storer2, Kelly M. Dexter2, Kiyoshi Maruyama8, 8 David J. Lohman6,9,10, Akito Y. Kawahara2 9 10 Affiliations: 11 1 Natural History Museum of Geneva, CP 6434, CH 1211 Geneva 6, Switzerland 12 2 Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, U.S.A. 13 3 Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta, 37, 08003 14 Barcelona, Spain 15 4 The University Museum, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 16 5 B. P. Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii, 96817-0916 U.S.A. 17 6 Biology Department, City College of New York, City University of New York, 160 Convent 18 Avenue, NY 10031, U.S.A. 19 7 Biology Department, University of Richmond, Richmond, Virginia, 23173, USA 20 8 9-7-106 Minami-Ôsawa 5 chome, Hachiôji-shi, Tokyo 192-0364, Japan 21 9 Ph.D. Program in Biology, Graduate Center, City University of New York, 365 Fifth Ave., New 22 York, NY 10016, U.S.A. 23 10 Entomology Section, National Museum of the Philippines, Manila 1000, Philippines 24 25 *To whom correspondence should be addressed: E-mail: [email protected] Page 3 of 55 Systematic Entomology 2 26 27 ABSTRACT 28 The origin of taxa presenting a disjunct distribution between Africa and Asia has puzzled 29 biogeographers for centuries.
    [Show full text]
  • International Journal of Research Volume VIII, Issue VI, JUNE/2019
    International Journal of Research ISSN NO:2236-6124 A Study on the Congregation of Adult Butterflies on Non-floral Resources at Different Locations in Jalpaiguri district of West Bengal, India Panchali Sengupta1*, Narayan Ghorai2 1Department of Zoology, West Bengal State University, Berunanpukaria, Malikapur, Barasat, District-24 Parganas (North), Kolkata-700126.West Bengal, India Email id: [email protected] 2Department of Zoology, West Bengal State University, Berunanpukaria, Malikapur, Barasat, District-24 Parganas (North), Kolkata-700126.West Bengal, India email id: [email protected] Abstract Several instances of puddling, as reported among different herbivore arthropods, appears quite interesting. Significantly, congregation of adult butterflies at several non-floral resources (wet soil/mud, animal dung, bird droppings, carrion, rotten/fermenting fruits) were examined at different locations in Jalpaiguri district adjacent to the tea estates, villages and agricultural tracts. Different species of papilionids and pierids congregate on wet soil patch and puddle collectively. However other species of nymphalid, lycaenid and hesperid are found to puddle individually, without associating with others on resources like excrements and carrion. Irrespective of any species newly emerged males, and aged females are found to puddle. Interestingly, each species belonging to a particular family have a specific range of puddling duration. Such specificity in puddling among species of a family could probably be associated with their need for a common nutrient. Keywords:, congregation, hesperid, lycaenid, nymphalid, papilionid, pierid *corresponding author Volume VIII, Issue VI, JUNE/2019 Page No:5877 International Journal of Research ISSN NO:2236-6124 Introduction Puddling is a widely recognised fascinating event in the life history of any herbivore arthropods except beetles targeted towards accumulation of specific micronutrient (Mollemann, 2010).
    [Show full text]
  • Study of Butterfly Diversity in College of Forestry Campus, Sirsi, Uttara
    Journal of Entomology and Zoology Studies 2019; 7(4): 01-11 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Study of butterfly diversity in college of forestry JEZS 2019; 7(4): 01-11 © 2019 JEZS campus, Sirsi, Uttara Kannada Received: 01-05-2019 Accepted: 05-06-2019 Udaya Kumar K Udaya Kumar K, Ramesh Rathod, Vinayak Pai, Karthik NJ and Nagaraj Department of Silviculture and Shastri Agroforestry, College of Forestry, Sirsi, Karnataka, India Abstract Ramesh Rathod Butterflies are the most fascinating group of insects to humankind, often regarded as flagship species. Assistant Professor, Department They are the good bio-indicators of the ecosystem and are very sensitive to changes in the environment. of Silviculture and Agroforestry, They play an important role in food chain and are valuable pollinators in the local environment. College of Forestry, Sirsi, Butterflies dependent on specific host plant in their developmental stages and hence their diversity Karnataka, India indirectly reflects the plant diversity of a particular area. With this context an investigation was carried out to document and analyze the community structure, richness and diversity of butterflies in forestry Vinayak Pai college campus, Sirsi, during which 84 butterfly species belonging to six families were recorded by Department of Forest Biology and Tree improvement, College following round walk method through visual observations of their wing color, patterns and also referring of Forestry, Sirsi, Karnataka, to field guides. The species diversity was found to be 3.34, calculated by using Shannon diversity index. India Eurema hecabe represents highest percentage (18.49) of abundance followed by Ypthima huebneri (12.72) in the study area.
    [Show full text]