Seasonal Flight Patterns of Anarsia Lineatella Zeller (Lepidoptera: Gelechiidae) in South-East Turkey*

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Flight Patterns of Anarsia Lineatella Zeller (Lepidoptera: Gelechiidae) in South-East Turkey* Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 8, August - 2015 Seasonal Flight Patterns Of Anarsia Lineatella Zeller (Lepidoptera: Gelechiidae) In South-East Turkey* Feza CAN CENGİZ Mitko SUBCHEV Mustafa Kemal University, Agriculture Faculty, Institute of Biodiversity and Ecosystem Research, Department of Plant Protection Bulgarian Academy of Science, 31040, Antakya, Hatay Sofia-Bulgaria [email protected] [email protected] Abstract—Seasonal monitoring of Anarsia apple. Previous studies on the biology of the pest in lineatella Zeller was organized in five localities in Adana, Mersin, Malatya and Bursa provinces Hatay province of South East Turkey: Alahan, revealed that the first moths appeared in April to May Delibekirli, Soğuksu and Vakıflı in 2009 and in and the flight ended in October to November Alahan, Döver and Vakıflı in 2010. For the field depending upon the [11]; [4]; [8]; [11]. However, in work pheromone baits for A. lineatella purchased the study carried out in peach orchards of İzmir an from CSALOMON® (Plant Protection Institute, earlier start of the flight - late March or early April, Budapest, Hungary) and home-made sticky Delta was found [1]. In different regions of Turkey, the pest traps of a transparent PVC foil were used. develops 2 to 5 generations [13]; [11]; [4]; [8]; [12]; [2]. Catches of A. lineatella were observed in all of [15] identified two pheromone compounds in A. the investigated sites in both years. In 2009 the lineatella females: (E)-5 decenyl acetate and (E)-5- earliest catches were registered on April 22 in decenol in a ratio of 7:1. Later some more Alahan and the latest ones on October 28 in pheromone components were identified for this Delibekirli, In 2010 the earliest catches were species but none of them was active in field [9]. observed in Alahan and Döver on April 24 and the Intensive field tests in Israel have shown that the latest ones were recorded on October 26 in Vakifli. optimal ratios of E5:10Ac and E15:10OH for Only at the latter site three well defined flight attracting A. lineatella males were 72:28 or 83:17. In periods, most probably representing three addition funnel traps was found to be more effective generations, were observed in both 2009 (end of than sticky traps at high population levels of the pest April – end of May; beginning-middle of June – while at the lower population levels the sticky traps middle-end of July and beginning-middle of were better [6]. August – middle of September) and 2010 Pheromone traps for seasonal monitoring of A. (beginning-middle of May – end of July, lineatella have already been used in different beginning of August – beginning-middle of countries where the pest occurs, e.g. Czech Reublic September and middle of September – end of [7], Bulgaria [5], Greece [3] etc. In Turkey results of October). In the rest of the sites such periods such monitoring were reported for Bursa province, were not so well defined – it seems that the first Thrace region of Turkey [8], Adana and Mersin and second generation overlapped while the third provinces, South-East Turkey [12]; [11]; [4] and İzmir one was more or less well defined. and Aydın provinces, Aegean region of Turkey [1]. The goal of our investigations was to establish the Keywords—Anarsia lineatella; Gelechiidae; patterns of the seasonal flight of A. lineatella in few pheromone traps; seasonal flight; Hatay; Turkey localities in Hatay, east Mediterranean Turkey. II. Materials and methods Sex pheromone baits for A. lineatella were I. INTRODUCTION ® Anarsia lineatella Z. is an orchard pest distributed purchased from CSALOMON (Plant Protection in West Europe, Mediterraneans, North Africa, Asia Institute, Budapest, Hungary). For the field work we minor, Near East, Iran, India, Australia and North used home-made sticky Delta traps of a transparent America [14]. The pest develops two generation in PVC foil with removable sticky layers covered with Central Europe: TANGLEFOOT® (Grand Rapids, Michigan, USA) insect glue. The pheromone baits were renewed at Czech republic [7] and Slovenia [16] and three or four five week intervals, as recommended by the producer generations in South Europe: Italy [10], Bulgaria [5] and the sticky layers – after getting contaminated. and Greece [3]. The monitoring was organized in five provinces in A. lineatella is known as a serious pest throughout south-east Turkey: Alahan, Delibekirli, Soğuksu and all regions of Turkey [2]. Its caterpillars damage on Vakıflı in 2009 and in Alahan, Döver and Vakıflı in peach, apricot, nectarine, plum, cherry, almond and www.jmest.org JMESTN42350983 2147 Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 8, August - 2015 2010; for details see Table 1. The traps were hung on Alahan and Vakıflı respectively. The earliest catches the tree were observed in Alahan and Döver on April 24. branches at a high of about 1.5 m. The traps were Again, because the catches were found at the first visited and the catches counted weekly. Data on visit of the traps after their installing in the filed we temperature were obtained from the meterological can not exclude earlier appearance of the moths at station for all locations in 2009 and 2010. those sites. The highest catches in 2010 were in Döver and Alahan on May 01 and August 28, at 16,2 Table 1. Localities and terms of field observations, and crops in the orchards where traps were installed. In bold – the kind of the fruit-tree(s) C and 29,5 C, respectively. on which the trap(s) were hung In 2009 only in Vakıflı three quiet well flight periods, most probably representing three generations, could be defined: end of April – end of Locality Date of May; beginning-middle of June–middle-end of July (number of Date of setting removing the Crop and beginning-middle of August – middle of traps) up the trap traps, date September. In the rest of the sites such periods were not so well defined – it seems that the first and Pomegranate, Alahan second generation overlapped while the third one 15.IV.2009 13.XI. 2009 apple, peach, olive (1 trap) was more or less well defined. and citrus In 2010 again in Vakıflı three flight periods could Apricot and be defined: beginning-middle of May–end of July, Delibekirli pomegranate (1 trap) 15.IV.2009 13.XI. 2009 early August–beginning-middle of September and middle of September–end of October. In Alahan and Apricot and Döver again only the third generation was more Soguksu pomegranate clearly separated. (1 trap) 22.IV. 2009 13.XI. 2009 Peach, plum, Alahan, 2009 Vakifli apricot, olive and 40 35 15.IV. 2009 13.XI. 2009 (1 trap) citrus 35 30 30 25 Pomegranate, 25 20 Alahan peach, olive and 20 15.IV. 2010 5.XI.2010 15 (2 traps) citrus etc. mothsN.of caught 15 Ave.temperature(°C) 10 10 Peach, plum, 5 5 Dover apricot, olive and 17.IV. 2010 5.XI.2010 0 0 (2 traps) citrus trees 1-Jul 8-Jul 3-Jun 2-Sep 9-Sep 7-Oct 5-Aug 4-Nov 15-Jul 22-Jul 29-Jul 6-May 10-Jun 17-Jun 24-Jun 22-Apr 29-Apr 16-Sep 23-Sep 30-Sep 14-Oct 21-Oct 28-Oct 12-Aug 19-Aug 26-Aug 11-Nov 13-May 20-May 27-May Date Peach, plum, 5 November apricot, olive and Fig. 1. Catches of Anarsia lineatella Zeller in Alahan, 2009; 1 trap Vakifli (2 traps) 24 April 2010 2010 citrus per site. III. Results Delibekirli, 2009 The flight patterns of the seasonal flight of A. 60 35 lineatella in 2009 and 2010 in the investigated sites 30 50 are presented on figure 1-4 and figure 5-7 25 respectively. Catches of A. lineatella were observed 40 20 in all of the investigated sites in both years. In 2009 30 N.of moths N.of caught 15 the most numerous catches were found in Delibekirli Ave.temperature(°C) 20 – 380 moths against 158 in Alahan, 211 in Soğuksu 10 10 and 215 in Vakıflı. The earliest catches were 5 registered on April 22 in Alahan. Although this was 0 0 1-Jul 8-Jul 3-Jun 7-Oct 2-Sep 9-Sep 15-Jul 22-Jul 29-Jul 4-Nov 5-Aug 6-May 10-Jun 17-Jun 24-Jun 14-Oct 21-Oct 28-Oct 16-Sep 23-Sep 30-Sep 22-Apr 29-Apr 11-Nov 12-Aug 19-Aug 26-Aug the first check of the trap after its installing in the field 13-May 20-May 27-May Date on April 15 and we can not exclude earlier flight, the single moth caught on the next visit indicates rather Fig. 2. Catches of Anarsia lineatella Zeller Delibekirli, 2009; 1 trap that this was the start of the flight. Most probably the per site. start of the flight was missed in Soğuksu where the trap was installed on April 22 and 23 moths caught were registered at the first visit on April 29. The latest catches in 2009 were registered on October 28 in Delibekirli, the site where the population level as presenting by the number of moths caught was highest. The highest catches in 2009 was in Soğuksu on July 01 at 29,7 C. In 2010 the most numerous catches were observed in Dover–377 moths against 263 and 240 in www.jmest.org JMESTN42350983 2148 Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 8, August - 2015 Soğuksu, 2009 Vakıflı, 2010 60 35 45 35 40 30 30 50 35 25 25 40 30 20 25 20 30 15 20 15 N.of mothsN.of caught N.of mothsN.of caught Ave.temperature(°C) 20 Ave.temperature(°C) 15 10 10 10 10 5 5 5 0 0 0 0 1-Jul 8-Jul 3-Jun 2-Jul 2-Sep 9-Sep 7-Oct 5-Jun 5-Aug 4-Nov 6-Sep 5-Oct 15-Jul 22-Jul 29-Jul 6-May 2-Aug 9-Aug 10-Jun 17-Jun 24-Jun 12-Jul 19-Jul 26-Jul 1-May 8-May 22-Apr 29-Apr 16-Sep 23-Sep 30-Sep 14-Oct 21-Oct 28-Oct 12-Jun 18-Jun 25-Jun 12-Aug 19-Aug 26-Aug 11-Nov 24-Apr 13-Sep 20-Sep 27-Sep 12-Oct 19-Oct 26-Oct 13-May 20-May 27-May 16-Aug 23-Aug 30-Aug 15-May 22-May 29-May Date Date Fig.
Recommended publications
  • Entomology) 1968, Ph.D
    RING T. CARDÉ a. Professional Preparation Tufts University B.S. (Biology), 1966 Cornell University M.S. (Entomology) 1968, Ph.D. (Entomology) 1971 New York State Agricultural Postdoctoral Associate, 1971-1975 Experiment Station at Geneva (Cornell University) b. Appointments and Professional Activities Positions Held 1996-present Distinguished Professor & Alfred M. Boyce Endowed Chair in Entomology, University of California, Riverside 2011 Visiting Professor, Swedish Agricultural University (SLU), Alnarp 2003-2009 Chair, Department of Entomology, University of California, Riverside 1989-1996 Distinguished University Professor, University of Massachusetts 1988 Visiting Scientist, Wageningen University 1984-1989 Professor of Entomology, University of Massachusetts 1981-1987; 1993-1995 Head, Entomology, University of Massachusetts 1981-1984 Associate Professor of Entomology, University of Massachusetts 1978-1981 Associate Professor of Entomology, Michigan State University 1975-1978 Assistant Professor of Entomology, Michigan State University Honors and Awards (selected) Certificate of Distinction for Outstanding Achievements, International Congress of Entomology, 2016 President, International Society of Chemical Ecology, 2012-2013 Jan Löfqvist Grant, Royal Academy of Natural Sciences, Medicine and Technology, Sweden, 2011 Silver Medal, International Society of Chemical Ecology, 2009 Awards for “Encyclopedia of Insects” include: • “Most Outstanding Single-Volume Reference in Science”, Association of American Publishers 2003 • “Outstanding
    [Show full text]
  • Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
    Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies.
    [Show full text]
  • Pheromone Trap Catch of Harmful Microlepidoptera Species in Connection with the Chemical Air Pollutants
    International Journal of Research in Environmental Science (IJRES) Volume 2, Issue 1, 2016, PP 1-10 ISSN 2454-9444 (Online) http://dx.doi.org/10.20431/2454-9444.0201001 www.arcjournals.org Pheromone Trap Catch of Harmful Microlepidoptera Species in Connection with the Chemical Air Pollutants L. Nowinszky1, J. Puskás1, G. Barczikay2 1University of West Hungary Savaria University centre, Szombathely, Károlyi Gáspár Square 4 2County Borsod-Abaúj-Zemplén Agricultural Office of Plant Protection and Soil Conservation Directorate, Bodrogkisfalud, Vasút Street. 22 [email protected], [email protected] Abstract: In this study, seven species of Microlepidoptera pest pheromone trap collection presents the results of the everyday function of the chemical air pollutants (SO2, NO, NO2, NOx, CO, PM10, O3). Between 2004 and 2013 Csalomon type pheromone traps were operating in Bodrogkisfalud (48°10’N; 21°21E; Borsod-Abaúj- Zemplén County, Hungary, Europe). The data were processed of following species: Spotted Tentiform Leafminer (Phyllonorycter blancardella Fabricius, 1781), Hawthorn Red Midged Moth (Phyllonorycter corylifoliella Hübner, 1796), Peach Twig Borer (Anarsia lineatella Zeller, 1839), European Vine Moth (Lobesia botrana Denis et Schiffermüller, 1775), Plum Fruit Moth (Grapholita funebrana Treitschke, 1846), Oriental Fruit Moth (Grapholita molesta Busck, 1916) and Codling Moth (Cydia pomonella Linnaeus, 1758). The relation is linear, logarithmic and polynomial functions can be characterized. Keywords: Microlepidoptera, pests, pheromone traps, air pollution 1. INTRODUCTION Since the last century, air pollution has become a major environmental problem, mostly over large cities and industrial areas (Cassiani et al. 2013). It is natural that the air pollutant chemicals influence the life phenomena of insects, such as flight activity as well.
    [Show full text]
  • 1 Modern Threats to the Lepidoptera Fauna in The
    MODERN THREATS TO THE LEPIDOPTERA FAUNA IN THE FLORIDA ECOSYSTEM By THOMSON PARIS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2011 1 2011 Thomson Paris 2 To my mother and father who helped foster my love for butterflies 3 ACKNOWLEDGMENTS First, I thank my family who have provided advice, support, and encouragement throughout this project. I especially thank my sister and brother for helping to feed and label larvae throughout the summer. Second, I thank Hillary Burgess and Fairchild Tropical Gardens, Dr. Jonathan Crane and the University of Florida Tropical Research and Education center Homestead, FL, Elizabeth Golden and Bill Baggs Cape Florida State Park, Leroy Rogers and South Florida Water Management, Marshall and Keith at Mack’s Fish Camp, Susan Casey and Casey’s Corner Nursery, and Michael and EWM Realtors Inc. for giving me access to collect larvae on their land and for their advice and assistance. Third, I thank Ryan Fessendon and Lary Reeves for helping to locate sites to collect larvae and for assisting me to collect larvae. I thank Dr. Marc Minno, Dr. Roxanne Connely, Dr. Charles Covell, Dr. Jaret Daniels for sharing their knowledge, advice, and ideas concerning this project. Fourth, I thank my committee, which included Drs. Thomas Emmel and James Nation, who provided guidance and encouragement throughout my project. Finally, I am grateful to the Chair of my committee and my major advisor, Dr. Andrei Sourakov, for his invaluable counsel, and for serving as a model of excellence of what it means to be a scientist.
    [Show full text]
  • Dr. Frank G. Zalom
    Award Category: Lifetime Achievement The Lifetime Achievement in IPM Award goes to an individual who has devoted his or her career to implementing IPM in a specific environment. The awardee must have devoted their career to enhancing integrated pest management in implementation, team building, and integration across pests, commodities, systems, and disciplines. New for the 9th International IPM Symposium The Lifetime Achievement winner will be invited to present his or other invited to present his or her own success story as the closing plenary speaker. At the same time, the winner will also be invited to publish one article on their success of their program in the Journal of IPM, with no fee for submission. Nominator Name: Steve Nadler Nominator Company/Affiliation: Department of Entomology and Nematology, University of California, Davis Nominator Title: Professor and Chair Nominator Phone: 530-752-2121 Nominator Email: [email protected] Nominee Name of Individual: Frank Zalom Nominee Affiliation (if applicable): University of California, Davis Nominee Title (if applicable): Distinguished Professor and IPM specialist, Department of Entomology and Nematology, University of California, Davis Nominee Phone: 530-752-3687 Nominee Email: [email protected] Attachments: Please include the Nominee's Vita (Nominator you can either provide a direct link to nominee's Vita or send email to Janet Hurley at [email protected] with subject line "IPM Lifetime Achievement Award Vita include nominee name".) Summary of nominee’s accomplishments (500 words or less): Describe the goals of the nominee’s program being nominated; why was the program conducted? What condition does this activity address? (250 words or less): Describe the level of integration across pests, commodities, systems and/or disciplines that were involved.
    [Show full text]
  • Tree-Derived Stimuli Affecting Host-Selection Response of Larva and Adult Peach Twig Borers, Anarsia Lineatella (Zeller) (Lepidoptera: Gelechiidae)
    TREE-DERIVED STIMULI AFFECTING HOST-SELECTION RESPONSE OF LARVA AND ADULT PEACH TWIG BORERS, Anarsia lineatella (ZELLER) (LEPIDOPTERA: GELECHIIDAE) Mark Christopher Sidney B.Sc, B.Ed, Simon Fraser University, 1999, 2004 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQmEMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the Department of Biological Sciences O Mark Christopher Sidney 2005 SEviOiu' FiiASEii I..u'iVEiiSIT'k' Summer 2005 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPROVAL Name: Mark Christopher Sidney Degree: Master of Science Title of Thesis: Tree-derived stimuli affecting host-selection response of larva and adult peach twig borers, Anarsia lineatella (Zeller) (Lepidoptera: Gelechiidae) Examining Committee: Chair: Dr. E. Elle, Assistant Professor Dr. G. Gries, Professor Department of Biological Sciences, S.F.U. Dr. G. Judd, Research Scientist Agriculture and Agri-Food Canada, Summerland Dr. M. Winston, Professor Department of Biological Sciences, S.F.U. Dr. S. Lindgren, Professor Ecosystem Science and Management Program, University of Northern British Columbia Public Examiner Date Approved SIMON FRASER UNIVERSITY PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.
    [Show full text]
  • Gelechiidae Biosecurity Occurrence Background Subfamilies Short
    Ardozyga stratifera (Gelechiinae) Gelechiidae Twirler Moths or Gelechiid Moths Biosecurity BIOSECURITY ALERT This Family is of Biosecurity Concern Occurrence This family occurs in Australia. Background The micromoth family Gelechiidae is the namesake family for the enormous superfamily Gelechioidea and is one of the most diverse families of the Lepidoptera. Gelechiids are very small moths with narrow wings. The family has a worldwide distribution and is diverse with over 4,700 known species in 500 genera, but that number would be at least doubled with undescribed and new species. The family is particularly prevalent in North America because of the close association of species with Douglas fir (Pseudotsuga). The caterpillars have very diverse feeding habits on many plant parts and species. Many species are external feeders but are protected by a shelter of some kind, often in tied or rolled leaves (Fig. 1). Many others feed internally, boring into flower heads, stems (Fig. 2) or roots. They are leaf-miners (Fig. 11), gall-inducers or stem-borers, or feed within flowers or fruits (Fig. 13). They also can be concealed in silken tunnels in earth or in portable cases. Not surprisingly, therefore, there are many gelechiids that are agricultural pests, such as: the pink bollworm, Pectinophora gossypiella (Fig. 13), one of the most destructive pests of cotton in the world; Sitotroga cerealella (Angoumois grain moth); Phthorimaea operculella (potato tuber moth); and, Tuta absoluta (tomato leaf miner). Contrastingly, several species have been used as biocontrol agents against weeds. One Australian species feeds on dead leaf litter. Fig. 1. Mature caterpillar of the widespread Australian gelechiid Ardozyga stratifera (Gelechiinae).
    [Show full text]
  • IHS Fresh Fruit/Vegetables
    Import Health Standard Commodity Sub-class: Fresh Fruit/Vegetables Cherries, Prunus avium from the United States of America – States of Idaho, Oregon and Washington ISSUED Issued pursuant to Section 22 of the Biosecurity Act 1993 Date Issued: 4 July 2005 IHS Fresh Fruit/Vegetables. Prunus avium from the United States of America – 4 July 2005 States of Idaho, Oregon and Washington (Biosecurity Act 1993) 1 Contents Endorsement Review and amendment Distribution INTRODUCTION SCOPE REFERENCES DEFINITIONS, ABBREVIATIONS AND ACRONYMS OUTLINE OF REQUIREMENTS NEW ZEALAND LEGISLATIVE REQUIREMENTS AND INTERNATIONAL OBLIGATIONS IMPORT HEALTH STANDARD: FRESH FRUIT/VEGETABLES – PRUNUS AVIUM FROM THE UNITED STATES OF AMERICA – STATES OF IDAHO, OREGON AND WASHINGTON 1 Official contact point (New Zealand National Plant Protection Organisation) 2 General conditions for the importation of all plants and plant products 3 Explanation of pest categories 4 Application of measures 5 General conditions for fresh fruit/vegetables for consumption 6 Specific conditions for cherries (Commodity Sub-Class: Fresh Fruit/Vegetables) from the United States of America – States of Idaho, Oregon and Washington 6.1 Pre-shipment requirements 6.1.1 Inspection of the consignment 6.1.2 Testing of the consignment 6.1.3 Phytosanitary measures for high impact pests 6.1.4 Documentation 6.1.5 Phytosanitary certification 6.1.6 Additional declarations to the phytosanitary certificate 6.2 Transit requirements 6.3 Inspection on arrival in New Zealand 6.4 Biosecurity/quarantine directive 6.5 Testing for regulated pests 6.6 Actions undertaken on the interception/detection of pests/contaminants 6.7 Biosecurity clearance 6.8 Audit of offshore measures 6.9 Feedback on non-compliance 7 Contingencies following biosecurity clearance Appendix 1: Categorised pest list Appendix 2: Pre-arrival phytosanitary measures for high impact fruit flies IHS Fresh Fruit/Vegetables.
    [Show full text]
  • Managing Vegetation for Agronomic and Ecological Benefits in California Nut Orchards
    Managing Vegetation for Agronomic and Ecological Benefits in California Nut Orchards February 2021 MANAGING VEGETATION FOR AGRONOMIC & ECOLOGICAL BENEFITS – CALIFORNIA NUT ORCHARDS PAGE 1 Acknowledgements This report was developed by Environmental Defense Fund with support from Environmental Incentives. We thank Amélie Gaudin, Vivian Wauters and Neal Williams (University of California, Davis); Rex Dufour (National Center for Appropriate Technology) and Lauren Hale (USDA Agricultural Research Service) for their valuable contributions. MANAGING VEGETATION FOR AGRONOMIC & ECOLOGICAL BENEFITS – CALIFORNIA NUT ORCHARDS PAGE 2 TABLE OF CONTENTS Introduction .............................................................................. 4 State of Research: Managed Vegetation in Nut Orchards .............. 5 Ecosystem Services and Business Value of Managed Vegetation .......................................... 5 Climate Change Impacts .................................................................................................11 Grower Decision-Making ........................................................... 13 Grower Perceptions ........................................................................................................13 Communication Networks ...............................................................................................16 Key Considerations ................................................................... 17 Selecting Plant Species ...................................................................................................17
    [Show full text]
  • Taxonomic Confusion Around the Peach Twig Borer, Anarsia Lineatella
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Nota lepidopterologica Jahr/Year: 2017 Band/Volume: 40 Autor(en)/Author(s): Gregersen Keld, Karsholt Ole Artikel/Article: Taxonomic confusion around the Peach Twig Borer, Anarsia lineatella Zeller, 1839, with description of a new species (Lepidoptera, Gelechiidae) 65-85 ©Societas Europaea Lepidopterologica; download unter http://www.soceurlep.eu/ und www.zobodat.at Nota Lepi. 40(1) 2017: 65–85 | DOI 10.3897/nl.40.11184 Taxonomic confusion around the Peach Twig Borer, Anarsia lineatella Zeller, 1839, with description of a new species (Lepidoptera, Gelechiidae) Keld Gregersen1, Ole Karsholt2 1 Fru Ingesvej 13, DK-4180, Denmark; [email protected] 2 Zoological Museum, Natural History Museum of Denmark, Universitetsparken 15, DK-2100 Copenhagen, Denmark; [email protected] http://zoobank.org/B06525D1-90F4-469F-B156-F33933FD7889 Received 7 January 2017; accepted 31 January 2017; published: 23 March 2017 Subject Editor: Lauri Kaila. Abstract. A new species of Gelechiidae is described as Anarsia innoxiella sp. n., based on differences in morphology and biology. It is closely related to and has hitherto been confused with the Peach Twig Borer, Anarsia lineatella Zeller, 1839. Whereas larvae of the latter feed on – and are known to be a pest of – Prunus species (Rosaceae), the larva of A. innoxiella feeds on Acer species (Sapindaceae). All known synonyms of A. lineatella are discussed in detail, including Anarsia lineatella subsp. heratella Amsel, 1967, from Afghanistan and A. lineatella subsp. tauricella Amsel, 1967, from Turkey. Our study has shown no evidence for changing the present taxonomic status of these two taxa.
    [Show full text]
  • CAPS PRA: Cydia Funebrana 1 Mini Risk Assessment Plum Fruit Moth
    Mini Risk Assessment Plum fruit moth, Cydia funebrana (Treitschke) [Lepidoptera: Tortricidae] Robert C. Venette, Erica E. Davis, Michelle DaCosta, Holly Heisler, & Margaret Larson Department of Entomology, University of Minnesota St. Paul, MN 55108 September 28, 2003 Introduction Cydia funebrana is an oligophagous pest, attacking the fruits of plum, cherry, peach, and other hosts typically within the plant family Rosaceae. This species is generally distributed in Europe, the Middle East, and northern Asia (CIE 1978). The likelihood and consequences of establishment by C. funebrana have been evaluated previously in a pathway-initiated risk assessment. Cydia funebrana was considered highly likely of becoming established in the US, if introduced; the consequences of its establishment for US agricultural and natural ecosystems were rated high (i.e., severe) (Cave and Lightfield 1997). This pest is also known as the red plum maggot and the plum fruit maggot (Zhang 1994). Figure 1. Larva and adult of Cydia funebrana. Images not to scale. [Larval image from Entopix; adult image from http://www.inra.fr/Internet/Produits/HYPPZ/IMAGES/7030280.jpg.] 1. Ecological Suitability. Rating: High. Cydia funebrana is found throughout most of the Palearctic, excluding the Near East and southeast Asia (USDA 1984). This climate within its range is generally characterized as dry or temperate (CAB 2003). The currently reported global distribution of C. funebrana suggests that the pest may be most closely associated with biomes that are generally classified as temperate broadleaf and mixed forests; temperate coniferous forests; or temperate grasslands, savannas, and shrublands. Based on the distribution of climate zones in the US, we estimate that approximately 79% of the continental US may be suitable for C.
    [Show full text]
  • TECHNOLOGY TRANSFER in MATING DISRUPTION Proceedings
    IOBC/WPRS Working Group "Use of Pheromones and Other Semiochemicals in Integrated Control" OILB/SROP Groupe de Travail "Utilisation des Pheromones et Autres Mediateurs Chimiques en Lutte lntegree" TECHNOLOGY TRANSFER IN MATING DISRUPTION Proceedings liVorking Group Meeting Montpellier (France) 9-1 O September 1996 Edited by Peter Witzgall & Heinrich Arn IOBC wprs Bulletin Bulletin OtLB srop Vol. 20 (1) 1997 The IOBC/WPRS Bulletinis published by the International Organizationfor Biological and Integrated Control of Noxious Animals and Plants, West PalaearcticRegional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publie par !'Organisation lnternationalede LutteBiologique et tntegree contre les Animaux et les Plantes Nuisibles, sectionRegionale Ouest Patearctique (OILB/SROP) Copyright IOBC/WPRS 1997 Address General Secretariat: INRA Station de Zoologie Domaine Saint-Paul Site Agroparc 84914 AVIGNON Cedex 9 France ISBN 92-9067-086-x Preface Insects use sex pheromones to communicate for mating. Pheromones elicit strong behav­ ioural reactions at minute amounts, they are species-specific and non-toxic. By permeating the atmosphere with synthetic pheromones, olfactory communication and m(lte-finding can be prevented. The mating disruption technique had a head start. Soon after the discovery of the first lepi­ dopteran sex pheromone in the late fifties, it was postulated that it should be possible to use synthetic pheromones for environmentally safe insect control - although virtually nothing was known about the chemistry and biology of pheromones at that time. Research techniques considered essential today, such as gas chromatography, electrophysiology or wind tunnel bioassays, were not available. The sex pheromones of economically important species and their behavioural effects had yet to be identified; synthesis, purification, and controlled re­ lease techniques had to be developed before practical applications came into reach.
    [Show full text]