Weather Science: What Causes Weather Understanding Weather Charts

Total Page:16

File Type:pdf, Size:1020Kb

Weather Science: What Causes Weather Understanding Weather Charts CANNOCK CHASE U3A SCIENCE & T ECHNOLOGY GROUP Weather Science: What causes weather Understanding weather charts 13 th July 2017 THE DIFFERENCE BETWEEN WEATHER AND CLIMATE IS … The climate is what you expect; The weather is what you get. Frequently attributed to Mark Twain. So, why do we get what we get? There are loads of factors at play… TEMPERATURE The Tropics are absorbing more energy than they are losing, whilst the North and South Poles are losing more energy than they are absorbing. This would mean that the Tropics would be always warming, and the Polar regions always cooling. However this isn’t the case, something else must be transporting heat from the Tropics to the poles – Winds. Pressure is how much air PRESSURE & W IND there is above your head Tropopause acts as a lid Temperature makes hot air rise, Zero mb with cooler air replacing it, causing a flow of air or wind. If more air diverges at the top than converges (friction), we end up with less air in the column and the air pressure falls (less weight). If there is more pressure in one place, and less elsewhere, then the air moves from high to low pressure. The bigger the difference between high and low pressure, the faster winds that blow. 1000 mb The units of pressure are mb or hPa Air weighs 1.225 kg/m 3 or inches of Hg, where 1mb = 1 hPa. Water is 1000kg/m 3 Pressure is shown on a barometer and can indicate the weather approaching. WHAT ARE ALL THE WEATHER MAP MARKINGS ? Temperature, Pressure contours, Wind & Fronts all appear on various charts. Pressure is usually in the range of 950-1050mb, UK, marked by lines (isobars). Isobar contours are lines of equal pressure, usually ovals at 4mb intervals. Pressures decrease towards centre of (L)ows & viceversa (H)igh and (L)ow pressure centres marked with a cross. Close together isobars means pressure rising rapidly, so wind speed is higher and blows almost parallel to isobar lines. Spread out isobars mean little wind with slower pressure changes. Low pressure usually means cloud rain & wind (cyclone). High pressure usually means fine weather (anticyclone). [-------Cold showery weather-------] AIR MASSES AND FRONTS ON CHARTS 6 sources of air mass as in picture. Weather “Fronts” are the boundaries of two Air Masses. Northerly winds can bring cold air. Southerly winds can bring warm air. Warm fronts on charts are red semicircles and mean rising air, higher pressure (higher column of air). Cold fronts are blue triangles and mean falling air, falling pressure. Air masses/Fronts meeting will clash at occluded front in purple, causing bad storms. THE CORIOLIS EFFECT & WIND Normally the wind tries to blow from high to low pressure, but the Video Earth’s spin acts on it, diverting it. Wind then follows the pressure contours and blows around low pressure in an anticlockwise direction. And around high pressure in a clockwise direction. (True only for the Northern Hemisphere). Remember that we name winds by the direction they are blowing from DEPRESSION , F RONTS , CLOUDS & R AIN 4 stages of a depression Cold fronts are marked with triangles (reminiscent of icicles) and warm fronts with semi-circles (reminiscent of the warm sun). The lines are the boundaries of the wave of warm air. The grey shading shows the region of continuous cloud cover. The occluded front (purple) occurs when the wave breaks, and the cold front catches up with the warm front. WHAT HAPPENS AT WARM & C OLD FRONTS APPROACHING FRONT : DEPRESSION PASSING OVERHEAD 4. As the front crosses you on the ground, the temperature rises as there is a shift from cold to warm air, typically by a few °C. Cirrus 5. The air pressure falls steadily ahead of and during the passage of the warm front, but then rises Nimbostratus slowly after its passage. 2. As1. the The front first moves thing towards that reaches you, ityou gets is lowerthe and similarlywarm front, the farclouds above get your lower head. and Theheavier. You’reclouds going are to needon the your front, umbrella. so you will see 3. On thehigh warm clouds, front, typically you’ll typically wispy, ice see clouds featurelesscalled cirrus,stratus then or ‘sheets’ Cumulonimbus of cloud, becoming nimbostratusrising. or ‘rainy sheets’ with a prolonged spell of rain when the front is near the ground. Cumulus clouds are indicative of THE PHYSICS convection. They can billow upwards as the air rises within them. PV / T = constant So, if the pressure falls, the gas must cool. As the rising air cools, the rate of evaporation becomes less than the rate of condensation until eventually cloud droplets form. As water vapour condenses into liquid water, latent heat is released providing the energy source for the developing storm. The latent heat generated is significant. For example, there is enough heat released in a small cumulus cloud to power an average home for 17 years. As the storm continues to develop, some of the cloud droplets will become large enough to fall as rain. THE JET STREAM Yet another force at play. The polar front jet stream is a belt of westerly winds in the upper troposphere, with wind speeds up to 250mph. It sits at a around 10km, the height at which aeroplanes fly. Trans- Powerful example of wind flow driven by Atlantic pilots make use of it. pressure & equator/pole temperature The jet stream can split up warm differences, but shaped by earth’s spin. & cold fronts. Normal Summer UK Jet Stream Summer 2012 UK Jet Stream FRONTS & F EATURES ON WEATHER MAPS To sum up so far: Let’s look at some features of a weather map ANYONE FOR TEA? Next after tea… Will it snow? How high is a cloud? Making a cloud WILL IT SNOW ? To have snow, we need a combination of two factors: A weather front, convection clouds (cumulous) or mountains 24 Dec 2010 need to be causing precipitation. The atmosphere needs to be cold enough for precipitation to fall as snow. Are there any cold fronts or air masses on Met Office surface pressure charts bringing rain? (www.metoffice.gov.uk ) Arctic maritime or polar continental air masses can bring snow in winter to the UK. Look for “528” contours. 1. ARE THERE COLD FRONTS ? LIKELY TO RAIN ? LOOK AT MET OFFICE CHARTS . S EE 528 LINE (DOTTED ) SURFACE PRESSURE AT WWW .METOFFICE .GOV .UK 2. W ILL IT SNOW ? 2. Is the atmosphere cold enough for precipitation to fall as snow? 500mb Look at thickness of bottom half of atmosphere. Hot air rises. Colder more dense air sinks to bottom half. © Netweather.tv 1000mb So smaller height = colder air. 500-1000mb is the bottom half mass of atmosphere. Height to 500mb pressure – Look for 528 lines = 5280m. 5280m = height below 500mb, snow is possible. Weather forecast charts from netweather.tv (charts/gfs) Select ‘HGT 500-1000’ netweather.tv 3. W ILL IT SNOW ? Saturday Feb 11th 2017 It snowed! Above London (0 0) Check whether the atmosphere really is cold enough throughout its entire depth: Go to wetter3.de …Select ‘Vertikalschnitte’ (Vertical section) and select latitude & longitude. wetter3.de EXTRA TIME … Measure the height of a cloud Making a cloud MEASURE THE HEIGHT OF CLOUDS Temperature change from the ground: Approx -6 degrees C per km (-1.8C per 1000ft) Use an Infra Red non-contact temperature sensor. Point IR sensor to clouds for temp measurement (eg -16C). Point to ground for ground temp (eg +5C). Temp difference, say 5C – (-16C) = 21C Height = 21/6 km = 3.5km Making a cloud video [Copyright Reading University] THAT’S IT FOLKS See you next time References thanks to Reading University RAIN, WHEN ? What causes precipitation (rain and snow)? Precipitation forms when cloud droplets (or ice particles) in clouds grow and combine to become so large that their fall speed exceeds the updraft speed in the cloud, and they then fall out of the cloud. If these large water drops or ice particles do not re-evaporate as they fall farther below the cloud, they reach the ground as precipitation. CLOUDS.
Recommended publications
  • WHAT IS METEOROLOGY? Meteorology Is the Science of Weather
    WHAT IS METEOROLOGY? Meteorology is the science of weather. It is essentially an inter-disciplinary science because the atmosphere, land and ocean constitute an integrated system. The three basic aspects of meteorology are observation, understanding and prediction of weather. There are many kinds of routine meteorological observations. Some of them are made with simple instruments like the thermometer for measuring temperature or the anemometer for recording wind speed. The observing techniques have become increasingly complex in recent years and satellites have now made it possible to monitor the weather globally. Countries around the world exchange the weather observations through fast telecommunications channels. These are plotted on weather charts and analysed by professional meteorologists at forecasting centres. Weather forecasts are then made with the help of modern computers and supercomputers. Weather information and forecasts are of vital importance to many activities like agriculture, aviation, shipping, fisheries, tourism, defence, industrial projects, water management and disaster mitigation. Recent advances in satellite and computer technology have led to significant progress in meteorology. Our knowledge of the weather is, however, still incomplete. WHAT IS SYNOPTIC METEOROLOGY? Weather observations, taken on the ground or on ships, and in the upper atmosphere with the help of balloon soundings, represent the state of the atmosphere at a given time. When the data are plotted on a weather map, we get a synoptic view of the worlds weather. Hence day-to-day analysis and forecasting of weather has come to be known as synoptic meteorology. It is the study of the movement of low pressure areas, air masses, fronts, and other weather systems like depressions and tropical cyclones.
    [Show full text]
  • Weather Forecasting and to the Measuring Weather Data, Instruments, and Science That Make Forecasting Accurate
    Delta Science Reader WWeathereather ForecastingForecasting Delta Science Readers are nonfiction student books that provide science background and support the experiences of hands-on activities. Every Delta Science Reader has three main sections: Think About . , People in Science, and Did You Know? Be sure to preview the reader Overview Chart on page 4, the reader itself, and the teaching suggestions on the following pages. This information will help you determine how to plan your schedule for reader selections and activity sessions. Reading for information is a key literacy skill. Use the following ideas as appropriate for your teaching style and the needs of your students. The After Reading section includes an assessment and writing links. VERVIEW Students will O understand the main factors that cause The Delta Science Reader Weather weather and produce weather changes Forecasting introduces students to the learn about the various instruments for world of weather forecasting and to the measuring weather data, instruments, and science that make forecasting accurate. Students will explore identify some of the elements of severe the six main weather factors—temperature, weather, and distinguish between weather air pressure, wind, humidity, precipitation, and climate and cloudiness—as well as discover the discuss the function of nonfiction text difference between weather and climate. elements such as the table of contents, The book also contains a biographical headings, tables, captions, and glossary sketch of tornado expert Tetsuya Theodore Fujita and information about two other kinds interpret photographs and graphics— of weather scientists: climatologists and diagrams, illustrations, weather maps— hurricane hunters. Students will find out to answer questions how a weather satellite works and how complete a KWL chart to track new different types of winds get their names.
    [Show full text]
  • Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems
    Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems Across the world, many different charts of different formats are used by different governments. These charts can be anything from a simple prognostic chart, used to convey weather forecasts in a simple to read visual manner to the much more complex Wind and Temperature charts used by meteorologists and pilots to determine current and forecast weather conditions at high altitudes. When used properly these charts can be the key to accurately determining the weather conditions in the near future. This Write-Up will provide a brief introduction to several common types of charts. Prognostic Charts To the untrained eye, this chart looks like a strange piece of modern art that an angry mathematician scribbled numbers on. However, this chart is an extremely important resource when evaluating the movement of weather fronts and pressure areas. Fronts Depicted on the chart are weather front combined into four categories; Warm Fronts, Cold Fronts, Stationary Fronts and Occluded Fronts. Warm fronts are depicted by red line with red semi-circles covering one edge. The front movement is indicated by the direction the semi- circles are pointing. The front follows the Semi-Circles. Since the example above has the semi-circles on the top, the front would be indicated as moving up. Cold fronts are depicted as a blue line with blue triangles along one side. Like warm fronts, the direction in which the blue triangles are pointing dictates the direction of the cold front. Stationary fronts are frontal systems which have stalled and are no longer moving.
    [Show full text]
  • Weather Fronts
    Weather Fronts Dana Desonie, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHOR Dana Desonie, Ph.D. To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2015 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • Warm and Cold Front Name: ______Period: _____ Date: ______Essential Question: How Do I Differentiate a Cold Front from a Warm Front?
    Warm and Cold Front Name: ______________________________________________________________ Period: _____ Date: ____________ Essential Question: How do I differentiate a cold front from a warm front? WEATHER: Weather is basically the way the atmosphere is currently behaving, mainly with respect to its effects upon life and human activities. Most people think of weather in terms of temperature, humidity, precipitation, cloudiness, brightness, visibility, wind, and atmospheric pressure, as in high and low pressure. High Air pressure means good, clear, sunny weather while low are pressure mean rainy or stormy weather. CLIMATE: Climate is the description of the long-term pattern of weather in a particular area. Some scientists define climate as the average weather for a particular region and time period, usually taken over 30-years. When scientists talk about climate, they're looking at averages of precipitation, temperature, humidity, sunshine, wind velocity, phenomena such as fog, frost, and hail storms, and other measures of the weather that occur over a long period in a particular place. Weather Fronts or simply fronts are the boundaries between air masses of different temperature. If warm air mass is moving toward cold air mass, it is a “warm front”. These are shown on weather maps as a red line with scallops on it. If cold air mass is moving toward warm air mass, then it is a “cold front”. Cold fronts are always shown as a blue line with arrow points on it. If neither air masses are moving very much, it is called a “stationary front”, shown as an alternating red and blue line. Cold fronts tend to move faster than all other types of fronts.
    [Show full text]
  • Weather Elements (Air Masses, Fronts & Storms)
    Weather Elements (air masses, fronts & storms) S6E4. Obtain, evaluate and communicate information about how the sun, land, and water affect climate and weather. A. Analyze and interpret data to compare and contrast the composition of Earth’s atmospheric layers (including the ozone layer) and greenhouse gases. B. Plan and carry out an investigation to demonstrate how energy from the sun transfers heat to air, land, and water at different rates. C. Develop a model demonstrating the interaction between unequal heating and the rotation of the Earth that causes local and global wind systems. D. Construct an explanation of the relationship between air pressure, fronts, and air masses and meteorological events such as tornados of thunderstorms. E. Analyze and interpret weather data to explain the effects of moisture evaporating from the ocean on weather patterns weather events such as hurricanes. Term Info Picture air mass A body of air that is made of air that has the same temperature, humidity and pressure. tropical air mass A mass of warm air. If it forms over the continent it will be warm and dry. If it forms over the oceans it will be warm and moist/humid. polar air mass A mass of cold air. If it forms over the land it will be cold and dry. If it forms over the oceans it will be cold and wet. weather front Where two different air masses meet. It is often the location of weather events. warm front An advancing mass of warm air. It is a low pressure system. The warm air is replacing a cold air mass and causes rain, sleet or snow.
    [Show full text]
  • Weather Basics - Page 1 English Offline Version Supported by the International Max Planck Research School on Atmospheric Chemistry and Physics
    Weather Basics Unit 1 The basics about weather, pressure systems and fronts Changes in our climate are difficult to observe as it is a long term process, which lasts over the span of a lifetime or even generations. An unusually rainy, cool spring or a heat wave in summer does not mean that the climate is changing. What we observe everyday are weather phenomena. The weather is observed world- wide in a dense network of meteorological stations. If average weather data change over decades we call this a climate change. In this unit we have a look at weather parameters. An important one is the pressure, as the sequence of high and low pressure systems has a strong influence on our weather. We explain how these pressure systems form, how fronts are generated and the type of weather they ususally cause. 1. Weather indicator © optikerteam.de ESPERE Climate Encyclopaedia – www.espere.net - Weather Basics - page 1 English offline version supported by the International Max Planck Research School on Atmospheric Chemistry and Physics Part 1: Weather and climate What is weather? Its definition and how it is different to climate Weather is the instantaneous state of the atmosphere, or the sequence of the states of the atmosphere as time passes. The behaviour of the atmosphere at a given place can be described by a number of different variables which characterise the physical state of the air, such as its temperature, pressure, water content, motion, etc. There isn't a generally accepted definition of climate. Climate is usually defined as all the states of the atmosphere seen at a place over many years.
    [Show full text]
  • 21111 21111 Physics Department Met
    21111 21111 PHYSICS DEPARTMENT MET 1010 Midterm Exam 3 December 3, 2008 Name (print): Signature: On my honor, I have neither given nor received unauthorized aid on this examination. YOUR TEST NUMBER IS THE 5-DIGIT NUMBER AT THE TOP OF EACH PAGE. (1) Please print your name and your UF ID number and sign the top of this page and the answer sheet. (2) Code your test number on your answer sheet (use lines 76{80 on the answer sheet for the 5-digit number). (3) This is a closed book exam and books, calculators or any other materials are NOT allowed during the exam. (4) Identify the number of the choice that best completes the statement or answers the question. (5) Blacken the circle of your intended answer completely, using a #2 pencil or blue or black ink. Do not make any stray marks or the answer sheet may not read properly. (6) Do all scratch work anywhere on this printout that you like. At the end of the test, this exam printout is to be turned in. No credit will be given without both answer sheet and printout. There are 33 multiple choice questions, each of which is worth 3 points. In addition there is a bonus question (marked) worth 1 extra (bonus) point which you will get simply for answering the bonus question. Therefore the maximum number of points on this exam is 100. If more than one answer is marked, no credit will be given for that question, even if one of the marked answers is correct.
    [Show full text]
  • Article (PDF, 8965
    Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, 2019 https://doi.org/10.5194/ascmo-5-147-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Automated detection of weather fronts using a deep learning neural network James C. Biard and Kenneth E. Kunkel North Carolina Institute for Climate Studies, North Carolina State University, Asheville, North Carolina, 28001, USA Correspondence: James C. Biard ([email protected]) Received: 28 March 2019 – Revised: 6 September 2019 – Accepted: 2 October 2019 – Published: 21 November 2019 Abstract. Deep learning (DL) methods were used to develop an algorithm to automatically detect weather fronts in fields of atmospheric surface variables. An algorithm (DL-FRONT) for the automatic detection of fronts was developed by training a two-dimensional convolutional neural network (2-D CNN) with 5 years (2003–2007) of manually analyzed fronts and surface fields of five atmospheric variables: temperature, specific humidity, mean sea level pressure, and the two components of the wind vector. An analysis of the period 2008– 2015 indicates that DL-FRONT detects nearly 90 % of the manually analyzed fronts over North America and adjacent coastal ocean areas. An analysis of fronts associated with extreme precipitation events shows that the detection rate may be substantially higher for important weather-producing fronts. Since DL-FRONT was trained on a North American dataset, its extensibility to other parts of the globe has not been tested, but the basic frontal structure of extratropical cyclones has been applied to global daily weather maps for decades. On that basis, we expect that DL-FRONT will detect most fronts, and certainly most fronts with significant weather.
    [Show full text]
  • PHAK Chapter 12 Weather Theory
    Chapter 12 Weather Theory Introduction Weather is an important factor that influences aircraft performance and flying safety. It is the state of the atmosphere at a given time and place with respect to variables, such as temperature (heat or cold), moisture (wetness or dryness), wind velocity (calm or storm), visibility (clearness or cloudiness), and barometric pressure (high or low). The term “weather” can also apply to adverse or destructive atmospheric conditions, such as high winds. This chapter explains basic weather theory and offers pilots background knowledge of weather principles. It is designed to help them gain a good understanding of how weather affects daily flying activities. Understanding the theories behind weather helps a pilot make sound weather decisions based on the reports and forecasts obtained from a Flight Service Station (FSS) weather specialist and other aviation weather services. Be it a local flight or a long cross-country flight, decisions based on weather can dramatically affect the safety of the flight. 12-1 Atmosphere The atmosphere is a blanket of air made up of a mixture of 1% gases that surrounds the Earth and reaches almost 350 miles from the surface of the Earth. This mixture is in constant motion. If the atmosphere were visible, it might look like 2211%% an ocean with swirls and eddies, rising and falling air, and Oxygen waves that travel for great distances. Life on Earth is supported by the atmosphere, solar energy, 77 and the planet’s magnetic fields. The atmosphere absorbs 88%% energy from the sun, recycles water and other chemicals, and Nitrogen works with the electrical and magnetic forces to provide a moderate climate.
    [Show full text]
  • Lesson 3 Predicting Weather
    LESSON 3 PREDICTING WEATHER Chapter 7, Weather and Climate OBJECTIVES • Describe high- and low- pressure systems and the weather associated with each. • Explain how technology is used to study weather. MAIN IDEA • To predict weather, scientists study air’s properties and movement. VOCABULARY • isobar - lines that connect places with equal air pressure • air mass - a large region of the atmosphere in which the air has similar properties throughout • front - the boundary between two air masses • cold front - cold air moves in under a warm air mass • warm front - warm air moves in over a cold air mass • occluded front - a weather front where a cold front catches up with a warm front and then moves underneath the warm front producing a wedge of warm air between two masses of cold air WHAT ARE HIGHS AND LOWS? • Scientists predict weather by studying how wind moves, from areas of high pressure to areas of low pressure. • A region’s air pressure is shown on weather maps which include isobars, measured in millibars, to show places with equal air pressure. • A low pressure system is illustrated by an (L) and has isobar readings that decrease towards the center. • A high pressure system (H) has, at its center, higher air pressure than its surroundings. • Wind speed is fastest where air pressure differences are greatest. • Closely spaced isobars show a large change over a small area, which indicates high wind speeds. • Gentle winds are shown by widely spaced isobars. AIR MOVEMENT AROUND HIGHS AND LOWS • Air flows outward from the center of a high pressure system.
    [Show full text]
  • A) B) C) D) 1. Which Weather Map Symbol Is Associated with Extremely
    1. Which weather map symbol is associated with extremely low air pressure? A) B) C) D) 2. The diagram below represents a weather instrument. Which weather variable was this instrument designed to measure? A) air pressure B) dewpoint C) relative humidity D) amount of precipitation Base your answers to questions 3 through 5 on the weather map below and on your knowledge of Earth Science. The map shows a low-pressure system with two fronts extending from its center (L). Points A, B, C, and D represents locations on Earth's surface. Two different air masses are labeled. 3. Which locations are most likely experiencing precipitation? A) A and B B) B and C C) C and D D) D and B 4. Which cross section best represents the frontal boundary (fb) and general pattern of air movements between locations C and D? A) B) C) D) 5. Which atmospheric conditions describe the air mass that is influencing weather conditions at location C? A) cool and dry B) cool and moist C) warm and dry D) warm and moist 6. A large rainstorm follows the usual direction of movement of a weather system across the United States. Which part of New York State will receive rain from the storm first? A) northwestern B) northeastern C) southwestern D) southeastern 7. The weather map below shows a portion of a low-pressure system. Which front will most likely pass over location A during the next two hours'? A) warm B) stationary C) occluded D) cold 8. The cross section of the atmosphere below represents the air motion near two frontal boundaries along reference line XY on Earth's surface.
    [Show full text]