Pastures: Sustainable Management

Total Page:16

File Type:pdf, Size:1020Kb

Pastures: Sustainable Management Pastures: ATTRA Sustainable Management A Publication of ATTRA - National Sustainable Agriculture Information Service • 1-800-346-9140 • www.attra.ncat.org By Alice Beetz and Well-managed forage systems contribute signifi cantly to the sustainability of a farm/ranch operation. This Lee Rinehart publication addresses numerous aspects of sustainable pasture integration, grazing rotation strategies, NCAT Agriculture and management options. It covers: grazing systems, pasture fertility, changes in the plant community Specialists through grazing, weed control, and pasture maintenance. It also discusses planning and goal-setting, © 2006 NCAT and offers an appendix item on trees in pasture settings. Contents Introduction ....................1 Considerations for Irrigated Pasture Systems in the Western U.S. ........ 9 Summary ........................13 References ...................... 15 Resources .......................16 Appendix: Trees in Pasture Systems ...........18 NCAT photo. Introduction cycles of annual weeds and other crop pests are interrupted during anagement is the key to healthy, pro- ductive pastures. Controlled, rota- the pasture years of the rotation. Mtional, or management-intensive • Soil health improves as the content grazing has increased forage production for of organic matter increases under many producers. Skillfully using livestock to good grazing management. harvest forages leads to improved soil fertil- ity, a diverse, dense, and useful pasture ecol- • Soil structure improves over time ogy, and an extended grazing season. Fertile as compaction and hardpan is soil and productive pastures, in turn, support reduced. healthy animals. • Ruminants (cattle, sheep, deer, Well-managed forage systems contribute goats) thrive in a better balanced to an operation’s sustainability in several agro-ecosystem and produce milk, ATTRA–National Sustainable important ways: meat, and fi ber from grasses that Agriculture Information Service is managed by the National Cen- cannot be digested by humans. • Lands most susceptible to erosion ter for Appropriate Technology Livestock eat excess plant materi- (NCAT) and is funded under a (or otherwise unsuitable for annual grant from the United States als while animal wastes contribute Department of Agriculture’s crops) can be maintained as perma- Rural Business-Cooperative Ser- nent sod. nutrients for plant growth. vice. Visit the NCAT Web site (www.ncat.org/agri. • Land used for row crops benefi ts • Marketing meat, milk, fi ber, and html) for more informa- tion on our sustainable from a year or more in pasture as other animal products can diversify agriculture projects. /$"5 part of a crop rotation plan. The life producer income. In the not-too-distant fertility requirements than do most dair- past, farmers more fully ies. Consistent production of high-quality integrated crop and forage under current management makes a livestock enterprises dairy or stocker enterprise an option to con- as a matter of course. sider. Otherwise, a different class of cattle, Grain produced in sheep, or other ruminant (either alone or fi eld rotation was either in a multispecies system) may be more sold or fed to livestock, suitable to your specifi c site and manage- ©2005 clipart.com depending on market ment capability. conditions. Cropland In setting production goals for any livestock The sun is the source of energy for the entire planet was rotationally seeded and much of this energy is captured and stored by enterprise, consider the economic return to forages, usually for plants. Plant fi bers that are otherwise unusable by per acre rather than production per animal. humans are eaten and converted into a new form several years. Land not This is a change from traditional thinking. of stored energy by domestic ruminants, such as suitable for crop pro- Compare pounds produced per acre or per cattle, sheep, and goats. Producers can then mar- duction was grazed. ket this animal meat, milk, and fi ber. In a very real dollar invested rather than weaning weights Animals also foraged sense, annual crop and livestock systems constitute or shipping weights. This type of analysis a harvest of the sun and a new source of wealth. And after-harvest crop resi- shows actual profi tability more clearly. (See the most effi cient system to convert the sun’s energy dues and the remains to money is likely to be the most profi table. A dense enclosed article by Doug Gunnink for tools of failed crops. These and diverse forage community off ers an excellent to analyze profi tability.) opportunity for livestock managers who can harvest time-honored strategies and market it. are not totally absent from today’s agricultural landscape; how- Renovating Pastures vs. ever, a better integration of crop and live- Establishing New Ones stock enterprises is a necessary step toward Planting a new pasture offers the oppor- the goal of sustainable pasture lands. tunity to choose forage species and variet- ies suited to the livestock type adapted to Planning and Goal-Setting the soil and climate. Effi ciency is further In analyzing your pasture systems, think of enhanced by matching the season of maxi- yourself as a grass farmer, and the livestock mum forage production to the period when as a means to market the forage. It doesn’t livestock can best use it or most need it. matter whether the grass is produced on Further, planting a diverse mixture of for- permanent pasture, on marginal land, ages with differing maturities provides a or on crop land in the pasture years of a high-quality, longer grazing season. rotation. An excellent goal is to produce enough good-quality County or state Extension personnel are ATTRA has developed several sustainability forage to sustain live- often good sources of information about for- checksheets for educators and producers to stock over as much of age varieties adapted to an area or even to a use in evaluating any operation that includes the year as possible. specifi c site. The Natural Resources Conserva- a grazing system. Each is designed to make tion Service (NRCS) is another good source of the producer think about how diff erent parts Then choose the live- information on forage production practices of the pasture-based enterprise relate to each stock that can best appropriate for particular grazing systems. other. The checksheets were developed by use it. This agency has been given specifi c respon- sibility for helping farmers improve the graz- teams of producers and educators and have Of course, different been tested in several locations. Checksheets ing lands of the United States. Most states currently available include: livestock species and have at least one NRCS Grazing Lands Spe- classes of livestock cialist to carry out this mandate. You can fi nd · Beef Farm Sustainability Checksheet have different feed more information about this initiative at www. · Dairy Farm Sustainability Checksheet requirements and glci.org/. · Small Ruminant Sustainability Checksheet forage preferences. Call ATTRA to request a printed copy of Most cow-calf opera- On the other hand, improving manage- any of these checksheets, or download tions, for instance, ment of an existing pasture is usually pref- them from our Web site at www.attra.org/ have lower forage erable to starting a new one. The cost to livestock.html. nutrition and soil seed, till, and control weeds for a new pas- Page 2 ATTRA Pastures: Sustainable Management The animals do not return to a paddock GOAL OF GOOD GRAZING until the plants have recovered and regrown MANAGEMENT: to the desired height for grazing (usually six The maximum number of animals has plenty to eight inches). As a result, the plants have of good quality forage to graze throughout time to recover, the roots maintain energy as much of the year as possible. The needs reserves, and the livestock always have high of the soil, the plants, and the livestock are quality forage. balanced to achieve this goal. Knowledge of forage plants and animal- KEY TOOLS OF GRAZING pasture interaction is necessary to the suc- MANAGEMENT: cess of this type of grazing plan—and fre- • Stock density quent attention to both is essential. This is • Frequency of moves why these programs are often referred to as • Paddock rest “management-intensive” grazing systems. Controlled, intensive, and rotational grazing are other terms loosely used for this type of ture is expensive and must be considered. grazing management. The subject of grazing Additionally, a producer must consider the management is covered more completely in cost to keep livestock off the acreage dur- the ATTRA publication Rotational Grazing. nowledge ing the establishment period. The risk of of forage, erosion during this transitional period must Rotations can vary from once every cou- pplants, also be taken into account. In short, it may ple of weeks to every 12 hours. Decisions K be more economical, and less disruptive to about when to move livestock are based on and animal-pasture the soil ecology, to improve an existing pas- the seasonal amount of forage available, the interaction is neces- ture’s forage by introducing desirable spe- rate of forage growth, and the number and sary to the success type of animals grazing the paddock. The cies using no-till seeding methods. of a controlled number and size of paddocks is also consid- Many pasture problems—such as sparse plant ered. Typically, grazing animals are moved grazing plan. cover, weed invasion, and slow growth—are quickly through paddocks during periods of caused by poor grazing management. If this rapid plant growth. In the fall, quick rota- is the case, establishing a new pasture will tions keep grasses from going to seed and not solve the problem. Newman Turner, in preserve forage quality. This strategy can Fertility Pastures and Cover Crops, observes delay for several weeks harvesting of forage that good grazing management can trans- as hay, allowing for hay to be put up dur- form poor grazing land into healthy, produc- ing a dryer time of the season.
Recommended publications
  • Costs to Implement Rotational Grazing
    Do You Have Problems With: • Low pasture yields • Low quality pasture • Weeds in the pasture • Poor livestock condition • Supplementing hay in summer pastures • Large bare spots in the pasture • Numerous livestock paths across the pasture Rotational grazing provides higher quality and better Rotational Grazing Can Help yielding forage. Benefits of Rotational Grazing: • Increased pasture yields • Better quality pastures • Carry more animals on the same acreage • Feed less hay • Better distribution of manure nutrients throughout the pasture • Healthier livestock • Improved income ($$) Healthy pastures = Healthy and productive livestock Costs to Implement Rotational Grazing • Example: A 40 acre pasture divided into 4 pastures can cost as little as $200 for single strand fencing. • To distribute water will be about $.50/foot of water line. • A portable watering trough costs about $100 to $160. Portable watering tank connected to a hose Rotational Grazing Components needed: • Light-weight fencing to subdivide large pasture areas – poly-wire, poly-tape, high tensile wire, electric netting, reels, rods for stringing fence on, fence charger, ground rods, lightning arrestors • Portable water troughs with pipeline if stationary trough is over 800 feet away from some of the pasture area • Handling area for livestock used to load and unload animals or work on them Planning a rotational grazing system A low cost single strand fence works well for dividing pastures. A rotational grazing system works best when the num- ber of livestock equals the carrying capacity of the pas- ture system. If livestock are overstocked then addi- tional hay will need to be provided. Generally 20-30 days are needed to rest pastures dur- ing rapid growth periods and 40 or more days during slow growth periods.
    [Show full text]
  • A Biodiversity-Friendly Rotational Grazing System Enhancing Flower
    A biodiversity-friendly rotational grazing system enhancing flower-visiting insect assemblages while maintaining animal and grassland productivity Simone Ravetto Enri, Massimiliano Probo, Anne Farruggia, Laurent Lanore, Andre Blanchetete, Bertrand Dumont To cite this version: Simone Ravetto Enri, Massimiliano Probo, Anne Farruggia, Laurent Lanore, Andre Blanchetete, et al.. A biodiversity-friendly rotational grazing system enhancing flower-visiting insect assemblages while maintaining animal and grassland productivity. Agriculture, Ecosystems and Environment, Elsevier Masson, 2017, 241, pp.1-10. 10.1016/j.agee.2017.02.030. hal-01607171 HAL Id: hal-01607171 https://hal.archives-ouvertes.fr/hal-01607171 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Agriculture, Ecosystems and Environment 241 (2017) 1–10 Contents lists available at ScienceDirect Agriculture, Ecosystems and Environment journal homepage: www.elsevier.com/locate/agee A biodiversity-friendly
    [Show full text]
  • Intensive Rotational Grazing of Romney Sheep As a Control for the Spread of Persicaria Perfoliata
    INTENSIVE ROTATIONAL GRAZING OF ROMNEY SHEEP AS A CONTROL FOR THE SPREAD OF PERSICARIA PERFOLIATA A Final Report of the Tibor T. Polgar Fellowship Program Caroline B. Girard Polgar Fellow Biodiversity, Conservation and Policy Program University at Albany Albany, NY 12222 Project Advisor: G.S. Kleppel Biodiversity, Conservation and Policy Program Department of Biological Sciences University at Albany Albany, NY 12222 Girard, C.B. and Kleppel, G.S. 2011. Intensive Rotational Grazing of Romney Sheep as a Control for the Spread of Persicaria perfoliata. Section III: 1-22 In D.J. Yozzo, S.H. Fernald and H. Andreyko (eds.), Final Reports of the Tibor T. Polgar Fellowship Program, 2009. Hudson River Foundation. III- 1 ABSTRACT The invasive species Persicaria perfoliata (mile-a-minute) is threatening native plant communities by displacing indigenous plant species in 10 of the coterminous United States including New York. This study investigated the effectiveness of a novel protocol, intensive rotational targeted grazing, for controlling the spread of P. perfoliata. Three Romney ewes (Ovis aries) were deployed into a system of four experimental paddocks, each approximately 200 m2, at sites invaded by P. perfoliata in the Ward Pound Ridge Reservation (Cross River, Westchester County, NY). The ewes were moved from one experimental paddock to the next at 2-3 d intervals. Four adjacent, ungrazed reference paddocks were also delineated for comparison with the experimental paddocks. A suite of plant community attributes (cover classes, species richness and composition), as well attributes of individual P. perfoliata plants (stem density, inflorescence) were monitored in the experimental and reference paddocks from June 24 to August 7, 2009.
    [Show full text]
  • Dairy Farmer Profitability Using Intensive Rotational Stocking
    Dairy Farmer Profitability Using United States Department of Intensive Rotational Agriculture Natural Stocking Resources Conservation Service Better grazing management Grazing Lands for pastures Technology Institute In 1992, Pennsylvania State University researchers conducted a study of the profitability of dairy farms practicing intensive rotational grazing. The 52 cooperating farmers were selected completely at random, with a stratified random sample statistical design, from among nearly 15 percent, or 350 farmers, practic- ing intensive grazing in a five-county region of northeastern Pennsylvania—Bradford, Tioga, Susquehanna, Wyoming, and Wayne Counties. The results from this study reflect typical use of intensive rotational stocking. The randomness of the sample selection ensures that the results reported here are representative, and can most likely be achieved by the typical farmer. September 1996 For additional copies of this publication, contact— Grazing Lands Technology Institute USDA, Natural Resources Conservation Service P.O. 6567 Fort Worth, Texas 76115 Dairy Farmer Profitability Using Intensive Rotational Stocking Figure 1. In a study of dairy farmer practices in a five-county area of northeastern Pennsylvania, farmers using pasture cut feed costs and increased profit per cow. One of the first representative studies of dairy Why typical dairy farmers adopt farmers practicing intensive rotational stocking was intensive rotational stocking conducted by Pennsylvania State University. The grazing method is defined as rotation of grazing cows In this 1992 study, the main reasons cited by dairy among several small pasture subunits called pad- farmers (fig. 2) for adopting intensive rotational docks versus stocking for continuously grazing one stocking were reduced costs and labor, they had large pasture.
    [Show full text]
  • Assessment of Cultural Practices in the High Mountain Eastern Mediterranean Landscape Al-Shouf Cedar Society CEPF
    Assessment of Cultural Practices in the High Mountain Eastern Mediterranean Landscape Al-Shouf Cedar Society CEPF 0 INDEX The Study Area- Shouf Biosphere Reserve 02 Introduction 03 1. The Shouf Biosphere Reserve (SBR) ……………………………………………….……………………………………………………… 04 A. Legal status of the Shouf Biosphere Reserve 04 B. Physical characteristics 04 C. Natural characteristics 05 D. Socio-economic feature 07 2. Assessment……………………………………………….……………………………………………….……………………………………………….……………………………….. 09 • Literature Review 09 • Overview 10 • Introduction 11 A. Traditional agricultural practices in the Levantine Mountains 12 B. Some general recommendations 13 C. Guidelines 15 D. Traditional Agricultural Techniques 24 E. Best Agricultural Practices 25 F. Additional Best Management Practices 26 G. Livestock: 30 • Conclusion of Literature Review: 31 • Special mention 32 • References in English: 34 3. Biodiversity in Lebanon……………………………………………….……………………………………………….……………………………………….. 37 4. Survey……………………………………………….……………………………………………….……………………………………………….……………………………………………….………… 41 5. Monitoring of Biodiversity Programme in the Shouf Biosphere ………………….…. 42 Reserve 6. Biodiversity and Cultural Practices at the at the SBR……………………………………………….…….. 47 7. Recommendations……………………………………………….……………………………………………….……………………………………………….………………… 48 A. Agriculture: 49 B. Water management: 51 C. Promotion of Ecotourism: 52 8. Information sheet……………………….……………………………………………….……………………………………………….………………………………………….. 54 A. Agriculture 54 B. Grazing 60 1 The Study Area- Shouf Biosphere Reserve 2
    [Show full text]
  • What Is Rotational Grazing and Why Is It So Important?
    What is Rotational Grazing and Why Is It So Important? To address environmental, economic and social issues through one method of agricultural management affecting the most acreage, choose grazing. Rotational grazing, management‐intensive grazing, rational grazing or holistic grazing are all methods to describe the movement of animals through subdivided pasture areas. The key elements to a successful grazing system are the limited time animals stay in each paddock and the amount of rest the pasture plants receive before being grazed again. In a healthy grazing system plant roots grow deeply into the ground, plant leaves harvest solar energy and cycles of water, minerals, energy and community dynamics are in balance. 1) Grazing has been proven to lower feed expenses, reduce nutrient loading in our waterways, stabilize farm financial longevity, and create an aesthetic working landscape. With the increasing pressures on Vermont farms, these benefits are critical to maintaining many farms in this state. 2) Research has shown that grazing production systems require less fuel than those that depend heavily on machinery and pesticide inputs, drying crops, ventilating buildings and the use of inorganic fertilizers. 3) Because much of the agricultural land in the state is best suited for forage production because of soil, site and climatic limitations, sustainability of agriculture in the region depends on keeping forage‐based livestock systems competitive and profitable while protecting the environment. 4) Consumers are choosing grass‐fed meat and milk on stores shelves, as measured through the 2010 Vermonter Poll. 49% of respondents indicated they purchased grass‐fed meat in the previous 12 months.
    [Show full text]
  • Rotational Grazing, More Roots, Less Plowing Key Recommended
    UVM Center for Sustainable Agriculture Grass Farming Research: Rotational Grazing, More roots, less plowing building soil health on a Champlain Valley Research Farm About the research Our project is taking place on a 400-acre Champlain Valley diversified beef farm with long previous use as a dairy operation. Its recent history includes heavy tillage and synthetic inputs, and the increased frequency of extreme weather events, which both have contributed to soil erosion and disaggregation and resulted in degraded fields. The Center’s research team is helping the current farmers recover the soils by monitoring and researching soil health and pasture forage ecosystems as they relate to the production of high-quality, grass-fed, grass-finished beef.’ We see pasture-based farming as an inseparable triad of well-functioning soils, abundant and high quality forages, and healthy livestock animals in a constant and balanced rotation. In viewing the farm ecosystem in this way, we recognize the complexities involved in regenerative practices, and see cows as drivers of resiliency and sustainability in the process. The assumption we are testing is that having high stock density animals graze on hayfields for short intervals will improve the health of the soil. Preliminary results indicate that well-managed grazing can improve soils and a farm’s productivity without synthetic fertilizers, and without great additional expense - as many grass-based farmers have believed for years. key recommended practices for building soil health Animals graze all fields at Organic amendments (on-farm Soils are kept well covered with least once per year, so that bedded pack compost and a diverse vegetated sward, with microorganisms and nutrients low formulation Pro-Gro*) can plants at least 4” tall.
    [Show full text]
  • Agroforestry at Wright-Locke Farm
    9 Old State Route 213, High Falls, NY 12440 / PO Box 3, High Falls, NY 12440 • [email protected] • 845-377-5444 Agroforestry at Wright-Locke Farm Master Plan Design Report Prepared by: Connor Stedman, Dyami Soloviev, Erin Kassis 9 Old State Route 213, High Falls, NY 12440 / PO Box 3, High Falls, NY 12440 • [email protected] • 845-377-5444 Table of Contents Master Plan Overview 2 Project Purpose & Contributions 2 Project Phasing & Overall Costing Estimates 4 Fodder Windbreaks 5 Goat Fodder Strips 7 Coppice Hillside Plantings 9 Wet Site Pollinator & Food Plantings 10 Bioswales 13 Mushroom Cultivation 14 Silvopasture Orchard 17 Agroforestry & Land Use on Forested Sites 20 Stands 1 & 2 - Multistrata Forest Gardens 21 Stands 1 & 3 - Woodland Silvopasture 22 Stands 4 & 5 - Maturing, Rocky Hardwoods 32 Stand 6 - Chestnut Orchard & Foraging Trails 33 Stand 7 - Enhancing Structural Complexity 36 Stand 8 - Oak-Blueberry Woodlands 37 Stand 9 - Buffer Slope 38 Pasture Rotations 39 Appendix A: Perennial Establishment Specifications 43 !1 9 Old State Route 213, High Falls, NY 12440 / PO Box 3, High Falls, NY 12440 • [email protected] • 845-377-5444 Master Plan Overview Project Purpose & Contributions Based on conversations with members of the Wright-Locke Farm Conservancy, Farm staff, Conservation Commission members, and community members, and on the April 2017 Community Design Charrette, the following primary goals for an Agroforestry Master Planning process were identified: 1. Increase Community Connections to Wright-Locke Farm a. Educational Opportunities !2 9 Old State Route 213, High Falls, NY 12440 / PO Box 3, High Falls, NY 12440 • [email protected] • 845-377-5444 b.
    [Show full text]
  • What Is Integrated Pest Management? Summer 2017
    Volume 4, Issue 3 What is Integrated Pest Management? Summer 2017 In this Issue All Articles by Jason Detzel, Livestock Educator Ulster County CCE unless otherwise What is Integrated Pest noted Management? (1) An introduction into the practices and methods Well, summer is here and that means it is the Biological Control (3) season of plenty, and by that I mean plenty of Utilizing parasitic wasps to control pests! We have dedicated this entire issue of flies in dairy barns Livestock 360 to integrated pest Cultural Controls (5) management. If you have any pest issues, Photo Credit: NRCS Are deer our most invasive pests? this is the place to start. Mechanical and Physical Controls (6) Keeping your flock safe from Integrated pest management (IPM) is scientifically based, whole-farm strategy that aerial predators focuses on long term prevention of pests and the damage they cause through a Chemical Control (7) combination of techniques such as biological control, habitat manipulation, Chemical control of parasitic modification of cultural practices, and use of resistant varieties. Basically we can worms use this system to identify and evaluate pests and their damage, formulate Utilzing IPM to Protect Bee treatment plans that specifically target these pests while avoiding beneficial Populations (9) What IPM means for todays organisms in the environment, and monitor the results. The focus of IPM is really on beekeeper the long term control and suppression of pests that affect plants and animals. IPM Species Specific References (11) The genesis of IPM can be traced back to pesticide resistance. The early use of Links to IPM resources pesticides as a magic bullet was quickly thwarted by the biological tenacity and The Back Page (12) rapid evolution of pests.
    [Show full text]
  • Grazing Animals As Biological Control Agents
    Proceedings of the First International Weed Control Congress, Melbourne 1992 273 Grazing animals as biological control agents Ian Popay2 and Roger Field2 grazing, have a natural advantage over many weed species. MAFTechnology, Flock House Agricultural Identifying a weed in grassland is difficult Centre, Private Bag, Bulls, New Zealand for farmers and scientists alike, even if it is 2 Plant Science Department, Lincoln University, defined simply as a plant species detrimentally Canterbury, New Zealand interfering with human activities. Barley grass may reduce sheep growth rates when seeding Summary but provides invaluable fodder when vegeta- Grazing animals are widely used as biologi- tive. Obvious weeds are either poisonous or cal control agents, but only in systems unpalatable, reducing the grassland available supporting crop /pasture and animal species to grazing stock. Species which may reduce rotations. Their main use is for food or grassland productivity are harder to identify as fibre, and weed control is incidental. To be weeds, and include some grasses and clovers. successful, weed control must become, Weediness is harder to define when plants temporarily, the main objective. The have redeeming features like high trace species, intensity and duration of grazing element content. animals can be controlled by fencing, allowing selectivity between weeds and Australian and New Zealand grazing desirable species. Many examples of success- ful biological control by grazing animals are systems given. Sustainability of control is offered by In Europe and North America, extensive use of increasing the control methods, and reduc- pesticides and fertilizers has allowed develop- ing their predictability. ment of simple agricultural systems. Some modem farms have no animals, whilst 62% of Introduction the 1982 U.S.A.
    [Show full text]
  • Silvopasture Handbook
    Silvopasture: Establishment & management principles for pine forests in the Southeastern United States February 2008 Editor: Jim Hamilton, Ph.D. Production coordinator: Kimberly Stuhr Layout & design: Ryan Dee USDA National Agroforestry Center 1945 N. 38th Street Lincoln, NE 68583–0822 www.unl.edu/nac www.workingtrees.org A partnership of Dedicated to retired U.S. Forest Service researchers Cliff Lewis, Henry Pearson, and Nathan Byrd. Your vision and dedication to improving forest and range management are the strong roots that support the advancement of silvopasture management today. Background This guidebook was created with the hope of improv- ing the value of silvopasture training in two ways: it will be available for use during training sessions and will serve as a concise field companion when planning future silvopastures. The information and principles contained in this initial printing have been reviewed by researchers and natural resource experts. It is anticipated that future versions of the guidebook will incorporate recommendations that result from actual field use and from training sessions. About the editor Jim Hamilton, Ph.D. is a forestry instructor at Haywood Community College in Clyde, NC. He has worked on a number of agroforestry projects in Paraguay, and with silvopasture systems and landowner education as an Extension Agent with Cooperative Extension in North Carolina and Alabama A&M University. Acknowledgments Sid Brantly, NRCS Kentucky Dr. Terry Clason, NRCS Louisiana Dr. Mary Goodman, Auburn University Dr. Joshua Idassi, Tennessee State University George Owens, Florida silvopasturist Dr. Ann Peischel, Tennessee State University James L. Robinson, NRCS Texas Dr. Greg Ruark, U.S. Forest Service Homer Sanchez, NRCS Texas Dr.
    [Show full text]
  • Pastures for Profit: a Guide to Rotational Grazing (A3529) R-10-02-5.5M-500
    A3529 Pastures for profit: A guide to rotational grazing Dan Undersander Beth Albert Dennis Cosgrove Dennis Johnson Paul Peterson Introduction 1 Setting up a rotational Contents Why rotational grazing? 1 grazing system 26 Setting goals and What is rotational grazing? 1 assessing resources 26 Who is using rotational grazing? 2 Length of rest periods 26 Why use rotational grazing? 2 Length of grazing periods 27 Understanding plant growth 5 Grazing groups 28 Plant response to grazing 5 Spring start-up 28 Seasonal pasture growth patterns 8 Seasonal fluctuations Weed control 8 in pasture growth rate 28 Soil fertility 10 Determining stocking rate and acreage needed 29 Pasture establishment/ renovation 10 Drought 30 Stockpiling forage 16 Moving livestock 30 Estimating forage yield 16 Paddocks: How many and how big? 30 Animal needs 20 Paddock layout 31 Animal digestion and nutrient Fencing 33 requirements 20 Lanes and laneways 33 Animal water needs 21 Designing a pasture system 34 Animal grazing 23 Deciding when to move Grazing patterns 23 livestock 35 Selective grazing 23 Evaluating and improving your grazing system 36 Amount of available forage 24 Grazing habits of different animals 24 Animal health on pasture 37 Animal impact on pasture 25 Parasites 37 Bloat 37 Nitrate poisoning and poisonous plants 38 Additional reading back cover Introduction Why rotational What is rotational grazing? grazing? astures represent a largely Under rotational grazing, only one untapped resource for farmers. portion of pasture is grazed at a time P More than one quarter of the while the remainder of the pasture Midwest’s agricultural land is in “rests.” To accomplish this, pastures some form of pasture.
    [Show full text]