Ice Crystals

Total Page:16

File Type:pdf, Size:1020Kb

Ice Crystals Ice Crystals Edited by Yoshinori Furukawa Printed Edition of the Special Issue Published in Crystals www.mdpi.com/journal/crystals Ice Crystals Ice Crystals Special Issue Editor Yoshinori Furukawa MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Yoshinori Furukawa Hokkaido University Japan Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Crystals (ISSN 2073-4352) in 2019 (available at: https://www.mdpi.com/journal/crystals/special issues/Ice Crystals). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03921-890-5 (Pbk) ISBN 978-3-03921-891-2 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Yoshinori Furukawa Ice Crystals Reprinted from: Crystals 2019, 9, 540, doi:10.3390/cryst9100540 .................... 1 Adiel F. Perez, Kyle R. Taing, Justin C. Quon, Antonia Flores and Yong Ba Effect of Type I Antifreeze Proteins on the Freezing and Melting Processes of Cryoprotective Solutions Studied by Site-Directed Spin Labeling Technique Reprinted from: Crystals 2019, 9, 352, doi:10.3390/cryst9070352 .................... 3 Jingyi Mo, Robert D. Groot, Graham McCartney, Enyu Guo, Julian Bent, Gerard van Dalen, Peter Schuetz, Peter Rockett and Peter D. Lee Ice Crystal Coarsening in Ice Cream during Cooling: A Comparison of Theory and Experiment Reprinted from: Crystals 2019, 9, 321, doi:10.3390/cryst9060321 .................... 18 Qiang Zeng and Kefei Li Quasi-Liquid Layer on Ice and Its Effect on the Confined Freezing of Porous Materials Reprinted from: Crystals 2019, 9, 250, doi:10.3390/cryst9050250 .................... 32 Negative Thermal Expansivity of Ice: Comparison of the Monatomic mW Model with the All-Atom TIP4P/2005 Water Model Reprinted from: Crystals 2019, 9, 248, doi:10.3390/cryst9050248 .................... 48 Lihua Wan, Xuebing Zhou, Peili Chen, Xiaoya Zang, Deqing Liang and Jinan Guan Decomposition Characterizations of Methane Hydrate Confined inside Nanoscale Pores of Silica Gel below 273.15 K Reprinted from: Crystals 2019, 9, 200, doi:10.3390/cryst9040200 .................... 59 Kenji Mochizuki and Masakazu Matsumoto Collective Transformation of Water between Hyperactive Antifreeze Proteins: RiAFPs Reprinted from: Crystals 2019, 9, 188, doi:10.3390/cryst9040188 ................... 76 Jinxiang Liu, Yujie Yan, Youguo Yan and Jun Zhang · Tetrahydrofuran (THF)-Mediated Structure of THF (H2O)n=1–10: A Computational Study on the Formation of the THF Hydrate Reprinted from: Crystals 2019, 9, 73, doi:10.3390/cryst9020073 .................... 86 v About the Special Issue Editor Yoshinori Furukawa is Professor Emeritus at the Institute of Low Temperature Science (ILTS) at Hokkaido University, Sapporo, Japan. He obtained his Ph.D. in 1981 in Geophysics at Hokkaido University, where he earlier graduated. Prof. Furukawa has pursued his professional carrier in research at the ILTS from 1978 to 2016 and has been the Director of ILTS in the period of 2011–2014. He has been Visiting Scientist at the Desert Research Institute at the University of Nevada System (USA, 1985–1987) as well as the University of Washington, (USA 1995). He has been also Visiting Professor at the Institute for Solid State Physics at the University of Tokyo (Japan, 2002) and at the Institute of Space and Astronautical Science at the Japan Aerospace Exploration Agency (Japan, 2007–2010). He has served as President of the Japanese Association for Crystal Growth (JACG, 2012–2014). He is also Associate Editor for the Journal of Crystal Growth (2006–present). He received the Award of the Japanese Society of Snow and Ice (1991), the JACG Best Paper Award (1994), the Best Paper Award of the Society for Science on Form, Japan (2015), and numerous other accolades. Concerning ice, his research is focused on crystal growth, surface structure and pattern formation. In 2008, he successfully demonstrated, for the first time, ice crystal growth at the International Space Station. vii crystals Editorial Ice Crystals Yoshinori Furukawa Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan; [email protected] Received: 17 October 2019; Accepted: 19 October 2019; Published: 19 October 2019 Abstract: The special issue on “Ice Crystals” includes seven contributed papers, which give the wide varieties of topics related to ice crystals. They focus on the interface structure of ice, the physical properties of hydrate crystals and the freezing properties of water controlled by antifreeze proteins. The present issue can be considered as a status report reviewing the research that has been made recently on ice crystals. These papers provide research information about the recent development of ice crystal research to readers. Keywords: ice crystal Ice crystals are the most ubiquitous material in the cryosphere environment of the Earth, in the planetary system, and also in our daily lives. In recent years, ice crystals have increased in importance as one of the key materials for finding solutions to settle various environmental concerns at a global scale. Furthermore, ice crystals are also expected as one of the unique materials which are extremely useful to various applications, for example, the food sciences, medical sciences, and other various fields. Dealing with these interesting subjects, research on ice crystals has been more actively pursued in recent years. Since research on ice crystals is included in many different fields, communications and discussions among researchers are not sufficient, nor are they smooth. Publications related to ice crystals are also distributed in various journals, such as those dealing with physics, chemistry, biology, geoscience, planetary science, crystal growth, and others. Consequently, this special issue will provide a platform for discussion among the researchers working in different fields. This special issue may include various subjects related to the structures, phase transitions, surface and interfaces, defects, crystal growth, clathrate hydrate, chemical properties, biological aspects, glaciological aspects, planetary aspects, and others for ice crystals, studied by theoretical, experimental, numerical and observational methods. This special issue presents seven papers, covering phase transition, surface and interface, clathrate, and biological aspects. Here we will briefly summarize the contents of papers appeared in this issue. Two contributions related to the structures and physical properties of ice crystals confined in nanoscale porous materials. Zeng and Li [1] discussed the formation of the quasi-liquid layer (QLL) at the interface between the confined ice and the pore walls. Freezing of the water confined in thin pores can be destructive to the porous frame, but the effect of QLL remains still far from being fully understood. They clarified that the existence of QLL at the interface narrows the gaps between the predicted and measured freezing deformations. On the other hand, Wan et al. [2] discussed the decomposition of methane hydrate confined inside the nanoscale pores of silica gel. Computer simulation studies for ice crystals are important in order to understand the structure and the dynamic properties of ice. This special issue includes three interesting papers related to the computer simulation. Huda et al. [3] discussed the origin of negative thermal expansivity of ice crystal, which has been experimentally observed at low temperature conditions. They first showed that the original monatomic water model using the quasi-harmonic approximation could not this Crystals 2019, 9, 540; doi:10.3390/cryst91005401 www.mdpi.com/journal/crystals Crystals 2019, 9, 540 property of ice, but a simple prescription, namely re-adjusting a so-called tetrahedrality parameter, proposed to recover the negative thermal expansion. This is an interesting result to understand on of the mysterious ice crystal properties. Liu et al. [4] discussed the formation mechanism of THF hydrate based on the ab initio calculations and ab initio molecular dynamics simulations. They found that weak hydrogen bonds exist between THF and water molecules. This finding suggests that the THF can promote water molecules from the planar pentagonal or hexagonal ring. On the other hand, Mochizuki and Matsumoto [5] presents an interesting paper related to the activities of antifreeze proteins. It is well-known that antifreeze proteins protect organisms living in subzero environments from freezing injury, which render them potential applications for cryopreservation of living cells, organs, and tissues. They clarified that the water molecules confined between a pair of insect hyperactive antifreeze proteins is discontinuously expelled as the two proteins approach each other at a certain distance. Another article related to the antifreeze protein was presented
Recommended publications
  • Sophie's Ice Cream Cartopens PDF File
    Connect your circuits to rPower* to control them remotely from a smartphone or tablet! Alice and Bettina became friends in their university’s master’s *Sold separately. engineering program, and soon discovered that they were both TM inspired to pursue engineering by childhood toys. To help inspire the We wanna hear about all the fun you had! Contact us at: Customer Service, 1400 E. Inman Pkwy., Beloit, WI 53511 • [email protected] • 1-800-524-4263. ® For more fun, visit playmonster.com Copyright © 2016 PlayMonster LLC, Beloit, WI 53511 USA. Made in China. All rights reserved. Roominate, The creative wired next generation of innovators, Alice and Bettina designed Roominate ! building kit and Switch on Your Imagination are trademarks of PlayMonster LLC. BUILD the Ice Cream Cart and a table! 2 Bonjour! I’m Sophie, and I can’t wait to see the ice cream cart you 1 design for me! ABOUT SOPHIE Favorite Activities: Cooking, reading and learning French Favorite Foods: Chicken noodle soup, cookies and ice cream Favorite Project: I have developed the best chocolate chip cookie recipe…it’s amazing how much chemistry is in cooking! Favorite Scientist: Dorothy Hodgkin Fun Fact: I’m planning to backpack in Europe after I graduate! I Want to Be: A chemist so I can design new medicine to help people, and discover ways for everyone to have clean water and healthy food! WIRE Collect all of the You can also add a motor to make it move! Sold separately. More designs at dolls, pets and roominatetoy.com! Roominate® kits! 1 2 Actual color of pieces in your set may be dierent from those shown here.
    [Show full text]
  • Proton Ordering and Reactivity of Ice
    1 Proton ordering and reactivity of ice Zamaan Raza Department of Chemistry University College London Thesis submitted for the degree of Doctor of Philosophy September 2012 2 I, Zamaan Raza, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 3 For Chryselle, without whom I would never have made it this far. 4 I would like to thank my supervisors, Dr Ben Slater and Prof Angelos Michaelides for their patient guidance and help, particularly in light of the fact that I was woefully unprepared when I started. I would also like to express my gratitude to Dr Florian Schiffmann for his indispens- able advice on CP2K and quantum chemistry, Dr Alexei Sokol for various discussions on quantum mechanics, Dr Dario Alfé for his incredibly expensive DMC calculations, Drs Jiri Klimeš and Erlend Davidson for advice on VASP, Matt Watkins for help with CP2K, Christoph Salzmann for discussions on ice, Dr Stefan Bromley for allowing me to work with him in Barcelona and Drs Aron Walsh, Stephen Shevlin, Matthew Farrow and David Scanlon for general help, advice and tolerance. Thanks and also apologies to Stephen Cox, with whom I have collaborated, but have been unable to contribute as much as I should have. Doing a PhD is an isolating experience (more so in the Kathleen Lonsdale building), so I would like to thank my fellow students and friends for making it tolerable: Richard, Tiffany, and Chryselle. Finally, I would like to acknowledge UCL for my funding via a DTA and computing time on Legion, the Materials Chemistry Consortium (MCC) for computing time on HECToR and HPC-Europa2 for the opportunity to work in Barcelona.
    [Show full text]
  • Ice Ic” Werner F
    Extent and relevance of stacking disorder in “ice Ic” Werner F. Kuhsa,1, Christian Sippela,b, Andrzej Falentya, and Thomas C. Hansenb aGeoZentrumGöttingen Abteilung Kristallographie (GZG Abt. Kristallographie), Universität Göttingen, 37077 Göttingen, Germany; and bInstitut Laue-Langevin, 38000 Grenoble, France Edited by Russell J. Hemley, Carnegie Institution of Washington, Washington, DC, and approved November 15, 2012 (received for review June 16, 2012) “ ” “ ” A solid water phase commonly known as cubic ice or ice Ic is perfectly cubic ice Ic, as manifested in the diffraction pattern, in frequently encountered in various transitions between the solid, terms of stacking faults. Other authors took up the idea and liquid, and gaseous phases of the water substance. It may form, attempted to quantify the stacking disorder (7, 8). The most e.g., by water freezing or vapor deposition in the Earth’s atmo- general approach to stacking disorder so far has been proposed by sphere or in extraterrestrial environments, and plays a central role Hansen et al. (9, 10), who defined hexagonal (H) and cubic in various cryopreservation techniques; its formation is observed stacking (K) and considered interactions beyond next-nearest over a wide temperature range from about 120 K up to the melt- H-orK sequences. We shall discuss which interaction range ing point of ice. There was multiple and compelling evidence in the needs to be considered for a proper description of the various past that this phase is not truly cubic but composed of disordered forms of “ice Ic” encountered. cubic and hexagonal stacking sequences. The complexity of the König identified what he called cubic ice 70 y ago (11) by stacking disorder, however, appears to have been largely over- condensing water vapor to a cold support in the electron mi- looked in most of the literature.
    [Show full text]
  • A Primer on Ice
    A Primer on Ice L. Ridgway Scott University of Chicago Release 0.3 DO NOT DISTRIBUTE February 22, 2012 Contents 1 Introduction to ice 1 1.1 Lattices in R3 ....................................... 2 1.2 Crystals in R3 ....................................... 3 1.3 Comparingcrystals ............................... ..... 4 1.3.1 Quotientgraph ................................. 4 1.3.2 Radialdistributionfunction . ....... 5 1.3.3 Localgraphstructure. .... 6 2 Ice I structures 9 2.1 IceIh........................................... 9 2.2 IceIc........................................... 12 2.3 SecondviewoftheIccrystalstructure . .......... 14 2.4 AlternatingIh/Iclayeredstructures . ........... 16 3 Ice II structure 17 Draft: February 22, 2012, do not distribute i CONTENTS CONTENTS Draft: February 22, 2012, do not distribute ii Chapter 1 Introduction to ice Water forms many different crystal structures in its solid form. These provide insight into the potential structures of ice even in its liquid phase, and they can be used to calibrate pair potentials used for simulation of water [9, 14, 15]. In crowded biological environments, water may behave more like ice that bulk water. The different ice structures have different dielectric properties [16]. There are many crystal structures of ice that are topologically tetrahedral [1], that is, each water molecule makes four hydrogen bonds with other water molecules, even though the basic structure of water is trigonal [3]. Two of these crystal structures (Ih and Ic) are based on the same exact local tetrahedral structure, as shown in Figure 1.1. Thus a subtle understanding of structure is required to differentiate them. We refer to the tetrahedral structure depicted in Figure 1.1 as an exact tetrahedral structure. In this case, one water molecule is in the center of a square cube (of side length two), and it is hydrogen bonded to four water molecules at four corners of the cube.
    [Show full text]
  • Arxiv:2004.08465V2 [Cond-Mat.Stat-Mech] 11 May 2020
    Phase equilibrium of liquid water and hexagonal ice from enhanced sampling molecular dynamics simulations Pablo M. Piaggi1 and Roberto Car2 1)Department of Chemistry, Princeton University, Princeton, NJ 08544, USA a) 2)Department of Chemistry and Department of Physics, Princeton University, Princeton, NJ 08544, USA (Dated: 13 May 2020) We study the phase equilibrium between liquid water and ice Ih modeled by the TIP4P/Ice interatomic potential using enhanced sampling molecular dynamics simulations. Our approach is based on the calculation of ice Ih-liquid free energy differences from simulations that visit reversibly both phases. The reversible interconversion is achieved by introducing a static bias potential as a function of an order parameter. The order parameter was tailored to crystallize the hexagonal diamond structure of oxygen in ice Ih. We analyze the effect of the system size on the ice Ih-liquid free energy differences and we obtain a melting temperature of 270 K in the thermodynamic limit. This result is in agreement with estimates from thermodynamic integration (272 K) and coexistence simulations (270 K). Since the order parameter does not include information about the coordinates of the protons, the spontaneously formed solid configurations contain proton disorder as expected for ice Ih. I. INTRODUCTION ture forms in an orientation compatible with the simulation box9. The study of phase equilibria using computer simulations is of central importance to understand the behavior of a given model. However, finding the thermodynamic condition at II. CRYSTAL STRUCTURE OF ICE Ih which two or more phases coexist is particularly hard in the presence of first order phase transitions.
    [Show full text]
  • Ice Cream Cone Pan 2105-2087
    Instructions for To Decorate Ice Cream Cone Cake You will need Wilton Icing Colors in Ivory, Golden Yellow, Rose; Tips 3, Baking & Decorating 16; Wilton Rainbow Jimmies Sprinkle Decorations. We suggest you tint all icings at one time, while the cake cools. Refrigerate icing in covered Ice Cream Cone containers until ready to use. Make 3 cups buttercream icing: Cakes • Tint 1/4 cup dark Ivory/Golden Yellow combination • Tint 1 1/4 cups light Ivory/Golden Yellow combination PLEASE READ THROUGH INSTRUCTIONS BEFORE YOU BEGIN. • Tint 1 1/2 cups rose (thin with 1 Tablespoon + 1 1/2 teaspoons light IN ADDITION, to decorate cake you will need: corn syrup) • Wilton Decorating Bags and Couplers or Parchment WITH DARK IVORY/GOLDEN YELLOW ICING Triangles • Use tip 3 and “To Make Outlines” directions to outline waffle pattern on co n e • Tips 3, 16 • Wilton Icing Colors in Ivory, Golden Yellow, Rose WITH LIGHT IVORY/GOLDEN YELLOW ICING (alternate design uses Kelly Green) • Use tip 16 and “To Make Stars” directions to cover cone • Cake Board, Fanci-Foil Wrap or serving tray WITH THINNED ROSE ICING • One 2-layer cake mix or ingredients to make favorite • Use spatula to ice fluffy bottom scoop, then top scoop layer cake recipe Immediately sprinkle scoops with rainbow jimmies. • Buttercream Icing (recipe included) • Alternate designs use Chocolate Mousse and Chocolate Buttercream Icing (recipes included) or Wilton Chocolate Ready-To-Use Decorator Icing, Wilton Candy Melts® in Light Cocoa and Pink, Wilton Rainbow Nonpareils and Rainbow Jimmies Sprinkle Decorations, Wilton Vanilla Whipped Icing Mix, chocolate chips, red gumball, favorite crisped rice cereal treat recipe, vegetable pan spray, light corn syrup Wilton Method Cake Decorating Classes Iced fluffy with thinned rose Sprinkle with icing rainbow jimmies Call: 800-942-8881 © 2003 Wilton Industries, Inc.
    [Show full text]
  • Let's Crank Some Ice Cream
    Let’s Crank Some Ice Cream! The history of ice harvesting, the ice industry, refrigeration, and making ice cream Kathi Elkins 7-29-19 OLLI: Summer 2019 Ice Storage and Ice Houses: 1780 BC --- ice house in northern Mesopotamian 1100 BC --- evidence of ice pits in China By 400 BC --- Persian engineers had mastered techniques of constructing yakhchāl to store ice harvested from nearby mountains. 300 BC --- Alexander the Great (snow pits to hold snow and ice) 200s AD --- Romans (snow shops) Cold springs, root cellars Ice Houses: Yakhchāl (this one at Yazd, Iran) is a Persian ice pit or a type of evaporative cooler. Above ground, the structure had a domed shape, but had a subterranean storage space. It was often used to store ice and food. The subterranean space coupled with the thick heat-resistant construction material insulated the storage space all year. Ice Houses: Ice houses in England/UK. Ice Houses: Croome's thatched ice house, Worcestershire, UK Ice Houses: Botany Bay Icehouse, Edisto Island, SC Ice Houses: Ice house designs usually began as an underground egg-shaped cellar. This ice house, dating from 1780s and designed by architect John Nash, was discovered in 2018 buried under London streets. In 1822, following a very mild winter, William Leftwich chartered a vessel to Norway to collect 300 tons of ice harvested from crystal-clear frozen lakes. Previous imports had been lost at sea, or melted while baffled customs officials dithered over how to tax such unique cargo. John Nash designed the Royal Pavilion at Brighton, as well as Buckingham Palace.
    [Show full text]
  • ICE CREAM MAKER Instruction Manual & Recipes
    ICE CREAM MAKER Instruction Manual & Recipes MODEL: AIC-100 (Capacity: 1 Quart) Congratulations on your purchase of Aroma's Ice Cream Maker. It allows you to make your own rich and creamy HOMEMADE ice cream or frozen yogurt with the flip of a switch. You can also make your own favorite, healthy and delicious sherbet, sorbet, ice and frozen drinks fast and easy with Aroma Ice Cream Maker. Enjoy your new Ice Cream Maker, it is fun and easy! Please read all instructions carefully before using this product. Published By: Aroma Housewares Company 6469 Flanders Drive San Diego, CA 92121 U.S.A. ©2003 Aroma Housewares Company IMPORTANT SAFEGUARDS Basic safety precautions should always be followed when using electrical appliances, including the following: 1. Read all Instructions before using the appliance. 2. To protect against electrical hazard, do not immerse main body-the motor base or other electrical cord in water or other liquid. 3. Close supervision is necessary when any appliance is used by or near children. 4. Unplug appliance from outlet when not in use, before putting on or taking off parts and before cleaning. 5. Avoid contacting moving parts. Keep fingers, hair, clothing, as well as spatulas and other utensils away during operation. 6. Do not operate any appliance with a damaged cord or plug or after the appliance malfunctions or is dropped or has been damaged in any manner. Return appliance to the nearest authorized service facility for examination, repair or adjustment. 7. The use of accessory attachments not recommended by the appliance manufacturer may cause hazards.
    [Show full text]
  • Daisy at Home Recipe for a Small Glacier
    Daisy at Home Recipe for a Small Glacier Supplies Scientific Concepts • 1 pint of chocolate swirl or Glacier: A huge, thick sheet marble ice cream. of moving ice. They are often found in mountains, • 3 of your favorite kinds of cookies. but can be found in other places, too. Washington • 1/4 cup of light-colored was half covered in a syrup (butterscotch, glacier during the Ice Age! marshmallow, etc.) • Plastic sandwich bag or similar. Glacial till: Materials, such as rocks and dirt, left • A clear bowl. behind when a glacier • A spoon. melts. Most of the soil in the Seattle area is made of glacial till. Daisy at Home Recipe for a Small Glacier Instructions 1. Crumble up the cookies and put them in the bowl. This represents dirt and rocks that will become glacial till. 2. Put two big scoops of the ice cream on top of the crumbled cookies. Glaciers begin as clean snow and ice, but they pick up dirt and rocks from the ground as they travel. So, the ice cream with its swirls represents this “dirty” glacier! 3. Slide the plastic sandwich bag over your hand. Then, slowly push down or “smoosh” the ice cream so it oozes! What do you notice? What happens to the cookie crumbles? A glacier moves in a similar way. As more snow falls on it, the added weight causes the glacier to “ooze” or “flow,” pushing the dirt in all directions. 4. To see how glaciers flow, heat up your light-colored syrup and pour it over the ice cream.
    [Show full text]
  • Glaciers and Their Significance for the Earth Nature - Vladimir M
    HYDROLOGICAL CYCLE – Vol. IV - Glaciers and Their Significance for the Earth Nature - Vladimir M. Kotlyakov GLACIERS AND THEIR SIGNIFICANCE FOR THE EARTH NATURE Vladimir M. Kotlyakov Institute of Geography, Russian Academy of Sciences, Moscow, Russia Keywords: Chionosphere, cryosphere, glacial epochs, glacier, glacier-derived runoff, glacier oscillations, glacio-climatic indices, glaciology, glaciosphere, ice, ice formation zones, snow line, theory of glaciation Contents 1. Introduction 2. Development of glaciology 3. Ice as a natural substance 4. Snow and ice in the Nature system of the Earth 5. Snow line and glaciers 6. Regime of surface processes 7. Regime of internal processes 8. Runoff from glaciers 9. Potentialities for the glacier resource use 10. Interaction between glaciation and climate 11. Glacier oscillations 12. Past glaciation of the Earth Glossary Bibliography Biographical Sketch Summary Past, present and future of glaciation are a major focus of interest for glaciology, i.e. the science of the natural systems, whose properties and dynamics are determined by glacial ice. Glaciology is the science at the interfaces between geography, hydrology, geology, and geophysics. Not only glaciers and ice sheets are its subjects, but also are atmospheric ice, snow cover, ice of water basins and streams, underground ice and aufeises (naleds). Ice is a mono-mineral rock. Ten crystal ice variants and one amorphous variety of the ice are known.UNESCO Only the ice-1 variant has been – reve EOLSSaled in the Nature. A cryosphere is formed in the region of interaction between the atmosphere, hydrosphere and lithosphere, and it is characterized bySAMPLE negative or zero temperature. CHAPTERS Glaciology itself studies the glaciosphere that is a totality of snow-ice formations on the Earth's surface.
    [Show full text]
  • A Field Guide to Falling Snow
    Basic Snowflake Forms (from SnowCrystals.com) Although no two snowflakes are exactly alike, snow crystal forms usually fall into several broad categories. You can find a more descriptive guide in the book – The Snowflake: Winter’s Secret Beauty. Stellar Dendrites Dendrite means "tree-like", which describes the multi-branched appearance of these snow crystals. Stellar dendrites have six symmetrical main branches and a large number of randomly placed sidebranches. They can also be large, perhaps 5mm in diameter. Although they have complex shapes, each stellar dendrite is a single crystal of ice. The molecular ordering of the water molecules is the same from one side of the crystal to the other. Sectored Plates What identifies these crystals are the numerous ice ridges that seem to divide the plate-like arms into sectors -- hence the name. Like the stellar dendrites, sectored plates are flat, thin slivers of ice that grow into in a stunning diversity of complex shapes. Hollow Columns Plate-like snow crystals get the most attention, but columnar crystals are the main constituents of many snowfalls. The columns are hexagonal, like a wooden pencil, and they often form with conical hollow features in their ends. Needles Columnar crystals can grow so long and thin that they look like ice needles. Sometimes the needles contain thin hollow regions, and sometimes the ends split into additional needle branches. Spatial Dendrites Not all snowflakes form as thin flat plates or slender columns. Spatial dendrites are made from many individual ice crystals jumbled together. Each branch is like one arm of a stellar crystal, but the different branches are oriented randomly.
    [Show full text]
  • Thermodynamic Stability of Hydrogen Hydrates of Ice Ic and II Structures
    PHYSICAL REVIEW B 82, 144105 ͑2010͒ Thermodynamic stability of hydrogen hydrates of ice Ic and II structures Lukman Hakim, Kenichiro Koga, and Hideki Tanaka Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima, Kitaku, Okayama 700-8530, Japan ͑Received 6 August 2010; published 13 October 2010͒ The occupancy of hydrogen inside the voids of ice Ic and ice II, which gives two stable hydrogen hydrate compounds at high pressure and temperature, has been examined using a hybrid grand-canonical Monte Carlo simulation in wide ranges of pressure and temperature. The simulation reproduces the maximum hydrogen-to- water molar ratio and gives a detailed description on the hydrogen influence toward the stability of ice structures. A simple theoretical model, which reproduces the simulation results, provides a global phase dia- gram of two-component system in which the phase transitions between various phases can be predicted as a function of pressure, temperature, and chemical composition. A relevant thermodynamic potential and statistical-mechanical ensemble to describe the filled-ice compounds are discussed, from which one can derive two important properties of hydrogen hydrate compounds: the isothermal compressibility and the quantification of thermodynamic stability in term of the chemical potential. DOI: 10.1103/PhysRevB.82.144105 PACS number͑s͒: 64.70.Ja I. INTRODUCTION relative to other water-hydrogen composite phases in a wide range of thermodynamic conditions has been scarcely ex- Storage of hydrogen has been actively investigated to plored. On the other hand, constructing a global phase dia- meet the demand on environmentally clean and efficient gram is a tedious task from experimental view point, consid- hydrogen-based fuel.1 A search for practical hydrogen- ering the number of thermodynamic states to be explored.
    [Show full text]