The Role of Soil Biology to Soil and Plant Health Brandywine Tomatoes Grown with Different Microbial Additions
Total Page:16
File Type:pdf, Size:1020Kb
DEGREE PROJECT IN CHEMICAL ENGINEERING, FIRST CYCLE, 15 HP STOCKHOLM, SWEDEN 2020 The role of soil biology to soil and plant health Brandywine tomatoes grown with different microbial additions MIKAEL ERIKSSON KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES IN CHEMISTRY, BIOTECHNOLOGY AND HEALTH DEGREE PROJECT Bachelor of Science in Chemical Engineering Title: The role of soil biology and plant health – Brandywine tomatoes grown with different microbial additions Swedish title: Jordbiologins roll för jord- och växthälsa – Brandywinetomater kultiverade med olika mikrobiella tillskott Keywords: Soil biology, soil health, soil food web, inoculation, compost, microbes, tomato plants Work place: 59degrees Supervisor work place: Josef Carrey (CEO) and Anette Forsberg (Biodynamic market gardener) Supervisor at KTH: Gunaratna Kuttuva Rajarao Student: Mikael Eriksson Date: 2020-11-17 Examiner: Sara Tyberg Naumann 2 (43) Summary The microbial life in the soil is essential for providing a functioning habitat for plants to grow. A literature study was conducted to investigate the knowledge and science behind soil biology. The purpose of this study was to define what is soil health and how it is influenced by the soil microbial communities. The literature study concluded that the ability of soil biology to benefit plants includes a variety of aspects. Nutrient availability, soil structure and pest resistance are all greatly influenced by soil microbes. To practically examine these theories, an experiment was conducted where Brandywine tomatoes where grown in three different scenarios. A commercial potting soil, Hasselfors ekojord, was used as substrate in all groups. In the control group (C) the plants were grown only in the substrate. In the second group (R), the seeds where treated with a microbial inoculum and then planted in the substrate. In the third group (RE), the same treatment as in R was done to the seeds and here, compost extract were also added to the RE group. The plants were grown in separate pots in a greenhouse and the growth rate was observed and documented as well as the total harvest. In the end of the growing season a chemical and biological analysis was done to the soil as well as a sap analysis on the leaves. The plant growth where similar among the groups although R and RE showed slightly higher growth rates in the later stages of the growing season. The harvested fruit was highest in C but not significantly. The microbial contents were high in all soils though more fungi communities in the RE and bacterial communities in C. The chemical analysis showed high nitrate concentrations in the leaves in C. In R and especially RE the nitrate conversion into amino acids and proteins where higher wish indicates that these groups are more resilient to pests like aphids. 3 (43) Sammanfattning Det mikrobiella livet i jorden är avgörande för att skapa en fungerande livsmiljö för växter. En litteraturstudie genomfördes för att undersöka nuvarande kunskap och vetenskap bakom markbiologi. Syftet med denna studie var att definiera markhälsa och hur den påverkas av det mikrobiella livet i jorden. Slutsatsen från denna litteraturstudie var att jordbiologins förmåga att gynna växter innefattar en rad olika aspekter. Näringstillgänglighet, markstruktur och skadedjursbeständighet påverkas starkt av jordmikrober. För att praktiskt granska dessa teorier genomfördes ett experiment där Brandywine-tomater odlades i tre olika scenarier. En kommersiell plantjord, Hasselfors ekojord, användes som huvudsubstrat i alla grupper. I kontrollgruppen (C) odlades växterna endast i substratet. I den andra gruppen (R) behandlades frön med en mikrobiell ympning innan de såddes i substratet. I den tredje gruppen (RE) utfördes samma fröbehandling som i R och kompostextrakt tillsattes också till RE-gruppen. Växterna odlades i separata krukor i ett växthus och tillväxthastigheten observerades och dokumenterades liksom den totala skörden. I slutet av växtsäsongen gjordes en kemisk och biologisk analys av jorden samt en savanalys på bladen. Tillväxten var likartad bland grupperna även om R och RE visade något högre tillväxttakt i de senare stadierna av växtsäsongen. Skördad frukt per planta var högst i C, dock inte signifikant. Den mikrobiella koncentrationen var hög i alla jordar men mer svamporienterat i RE och bakterieorienterat i C. Den kemiska analysen visade högt nitratinnehåll i bladen i C. I R och särskilt i RE var nitratomvandlingen till aminosyror och proteiner högre vilket indikerar att dessa grupper är mer motståndskraftiga mot skadedjur så som bladlöss. 4 (43) Content 1 Introduction.......................................................................................................................... 7 2 Literature background .......................................................................................................... 8 2.1 Soil fundamentals .......................................................................................................... 8 2.1.1 Soil formation ......................................................................................................... 8 2.2 Soil health ................................................................................................................... 10 2.2.1 Soil physics and structure ..................................................................................... 10 2.2.2 Soil organic matter ............................................................................................... 12 2.2.3 Soil nutrients and chemistry ................................................................................. 13 2.2.4 Soil biology .......................................................................................................... 18 2.3 Compost ...................................................................................................................... 26 2.4 Tomatoes ..................................................................................................................... 27 3 Plant experiment ................................................................................................................ 29 3.1 Methods and materials ................................................................................................ 29 3.1.1 Microbial additives ............................................................................................... 29 3.1.2 Plant experiment setup and cultivation ................................................................ 29 3.2 Observations and analyzes .......................................................................................... 30 3.2.1 Plant observation .................................................................................................. 30 3.2.2 Sap analysis .......................................................................................................... 31 3.2.3 Soil analysis .......................................................................................................... 31 3.2.4 Statistical methods ................................................................................................ 31 4 Results and discussion ....................................................................................................... 32 5 Conclusion ......................................................................................................................... 38 5.1 Literature background ................................................................................................. 37 5.2 Plant experiment ......................................................................................................... 37 References ............................................................................................................................. 40 5 (43) Acknowledgments I would like to thank Skillebyholm, Swedish center for biodynamic farming, and their staff for their patience and for providing space in their greenhouses for this experiment. A special thanks to Anette Forsberg for her generosity in both sharing expertise and help. 6 (43) 1 Introduction Since the middle of the last century, a gradual use of synthetically produced fertilizers and pesticides as well as the use of fossil fuel as an energy source have increased crop yields. This has provided an increasing population with food, but the optimization of agriculture has often taken place with little regard for long-term effects and has brought with it a number of environmental problems. An obvious effect for us living in Sweden is the bottom death in the Baltic Sea, which is currently spreading on an area as large as Denmark.[1] This can largely be attributed to the leakage of nutrients from agriculture and from other industries. Intensive agricultural methods like heavy tilling of topsoil has also reduced the original carbon rich soil in the US by between 25 and 75%[2]. At the same time, in search for fast-growing crops and high yields has resulted in a steady decline in the nutritional content of cereals, fruits and vegetables.[3] It is well known that microbial life in the soil interacts with the roots of plants and has a major impact on its growth and health. Optimal biological conditions in the soil can be of great importance in reducing the use of synthetic nutrition and pesticides as well as reducing the need for tillage. At the same time, prosperous soil in the end can also contribute to foods with higher nutritional content. Hence, it is highly essential to have good