Earth Syst. Sci. Data, 12, 3189–3204, 2020 https://doi.org/10.5194/essd-12-3189-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. The impact of landscape evolution on soil physics: evolution of soil physical and hydraulic properties along two chronosequences of proglacial moraines Anne Hartmann1, Markus Weiler2, and Theresa Blume1 1GFZ German Research Centre for Geosciences, Section Hydrology, Potsdam, Germany 2Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany Correspondence: Anne Hartmann (
[email protected]) Received: 30 April 2020 – Discussion started: 9 June 2020 Revised: 5 October 2020 – Accepted: 22 October 2020 – Published: 4 December 2020 Abstract. Soil physical properties highly influence soil hydraulic properties, which define the soil hydraulic behavior. Thus, changes within these properties affect water flow paths and the soil water and matter balance. Most often these soil physical properties are assumed to be constant in time, and little is known about their natural evolution. Therefore, we studied the evolution of physical and hydraulic soil properties along two soil chronosequences in proglacial forefields in the Central Alps, Switzerland: one soil chronosequence developed on silicate and the other on calcareous parent material. Each soil chronosequence consisted of four moraines with the ages of 30, 160, 3000, and 10 000 years at the silicate forefield and 110, 160, 4900, and 13 500 years at the calcareous forefield. We investigated bulk density, porosity, loss on ignition, and hydraulic properties in the form of retention curves and hydraulic conductivity curves as well as the content of clay, silt, sand, and gravel.