Saturated Hydraulic Conductivity and Its Impact on Simulated Runoff for Claypan Soils

Total Page:16

File Type:pdf, Size:1020Kb

Saturated Hydraulic Conductivity and Its Impact on Simulated Runoff for Claypan Soils Saturated Hydraulic Conductivity and Its Impact on Simulated Runoff for Claypan Soils Humberto Blanco-Canqui,* Clark J. Gantzer, Stephen H. Anderson, E. E. Alberts, and F. Ghidey ABSTRACT surements (Mallants et al., 1997). Samples based on Saturated hydraulic conductivity (Ksat ) is an essential parameter the REV often reflect the natural boundary conditions for understanding soil hydrology. This study evaluated the Ksat of in (Gupta et al., 1993), and diminish disturbance and com- situ monoliths and intact cores and compared the results with other paction of soil during sampling (Vepraskas and Wil- studies for Missouri claypan soils. These Ksat values were used as liams, 1995). runoff-model inputs to assess the impact of K variation on simulated sat Soil texture is generally known to affect Ksat. Clay runoff. Lateral in situ K of the topsoil was determined on 250 by sat soils typically have low Ksat values (Bouma, 1980; Jami- 500 by 230 mm deep monoliths. These values were compared with son and Peters, 1967). This is of interest in the midwest the Ksat of 76 by 76 mm diam. intact cores with and without bentonite USA because about 4 million ha of claypan soils exist to seal macropores. Mean (Ϯ SD) lateral in situ Ksat was 72 Ϯ 0.7 Ϫ1 in this region (Jamison et al., 1968). These soils have mm h and mean intact core Ksat without bentonite was 312 Ϯ 58 mm hϪ1. The mean intact core K without bentonite was significantly an argillic horizon 130 to 460 mm deep, with clay con- sat Ͼ Ϫ1 larger than the lateral in situ Ksat (P ϭ 0.03). The lateral in situ Ksat tents 450 g kg and are very slowly permeable al- Ϫ1 was not different from core Ksat with bentonite (71 Ϯ 1.1 mm h ). though published data are limited (Jamison and Pe- The intact core Ksat with bentonite differed from previous studies by ters, 1967). 10 times. This was attributed to the variations in soil depth to claypan, Because of the argillic horizon, claypan soils may macropore presence, and methodology. The impact of using an effec- perch water and create lateral flow. A study of claypan tive hydraulic conductivity (Keff ) computed from measured Ksat on hydrology suggests that runoff rates may be equal to intact cores without bentonite underestimated the Water Erosion rainfall under saturated conditions (Saxton and Whitaker, Prediction Project (WEPP) simulated runoff by 28% for a measured 1970). Furthermore, studies of runoff and rainfall data runoff event of 40 mm. The core Ksat with bentonite was correlated with measured runoff from long-term erosion-runoff plots. A quadratic from the McCredie rainfall-erosion plots near Kingdom regression explained 95% of the variability between measured and City, MO, indicate that lateral flow known as interflow simulated runoff. may be a significant component of the total runoff dur- ing springtime when precipitation is usually the most intense and the erosion rates are the highest (Minshall aturated hydraulic conductivity is an essential and Jamison, 1965; Ghidey and Alberts, 1998). To date, S parameter for understanding soil water movement. detailed in situ lateral Ksat studies have not been con- It is a fundamental input for modeling runoff, drainage, ducted for Missouri claypan soils because measurements and movement of solutes in soils (Mallants et al., 1997). are costly and time-consuming (Blevins et al., 1996). Lateral Ksat measurements are also limited elsewhere While Ksat is widely studied, questions remain about how sample size and boundary conditions influence (Ahuja and Ross, 1983; Wallach and Zaslavsky, 1991). its determination. The need for in situ lateral Ksat determination for Mis- Reports have found that measurements on small sam- souri claypan soils has been recognized because of the probability of interflow (Jamison et al., 1968; Wilkinson ples (Ͻ100-mm diam.) tend to give higher Ksat values than do measurements on larger samples (Bagarello and and Blevins, 1999). Information on in situ lateral Ksat Provenzano, 1996). The values of small samples are also through the horizons above the claypan is important for questioned because samples are too small to embody a determining their ability to conduct water laterally and representative elementary volume (REV) of soil. The assessing runoff and erosion. REV is a conceptual unit representing the smallest vol- Many have characterized the vertical Ksat for claypan ume of a soil unit (Mallants et al., 1997). Its actual soils (Doll, 1976; Zeng, 1994). However, most of the dimensions are ill defined. Bouma (1980) suggests three measurements were made only for the surface horizons 3 (Jamison and Peters, 1967; McGinty, 1989), therefore, REV sizes for Ksat determinations: 100 cm for sand, 1000 cm3 for silt, and 10 000 cm3 for clay soils. As a studies of Ksat variations with depth are few. Because of their hydrologic attributes, claypan soils probably sample size increases, variability in Ksat values is ex- pected to decrease. have quite different effective Ksat values with depth from The use of the REV is thought to reduce the sample- other Alfisols. The information on Ksat depth distribu- size dependence of K , and thus facilitate better mea- tion would be valuable in explaining the claypan hydrol- sat ogy and for characterization of variability in horizons H. Blanco-Canqui, C.J. Gantzer, and S.H. Anderson, Dep. of Soil and of low and high permeability required for accurate Atmospheric Sciences, Univ. of Missouri-Columbia, 302 Anheuser- flow studies. Busch Natural Resources Building, Columbia, MO 65211; E.E. Al- Because the Ksat values may vary by measurement berts, USDA-ARS, and F. Ghidey, Dep. of Biological Engineering, method (Bouma, 1980; Bagarello and Provenzano, 1996; Univ. of Missouri, Columbia, 269 Agricultural Engineering Building, Columbia, MO 65211. Contribution of the Missouri Agric. Exp. Stn. Journal. No. 13159 Received 25 July 2001. *Corresponding author Abbreviations: EC, electrical conductivity; Keff, effective hydraulic ([email protected]). conductivity; Ksat, saturated hydraulic conductivity; REV, representa- tive elementary volume; SAR, Na adsorption ratio; WEPP, Water Published in Soil Sci. Soc. Am. J. 66:1596–1602 (2002). Erosion Prediction Project. 1596 BLANCO-CANQUI ET AL.: SATURATED HYDRAULIC CONDUCTIVITY AND CLAYPAN SOILS 1597 Mallants et al., 1997), the available Ksat data on these MATERIALS AND METHODS soils need to be studied to determine their consistency Installation of Soil Monoliths for Lateral and uniformity by method. Data from such measure- in situ K Measurements ments should be statistically the same to be used for sat hydrologic prediction and modeling. This study was conducted at the Midwest Research Claypan Farm (McCredie) near Kingdom City, MO. A 10 by 30 m Since knowledge of Ksat is essential for the use of Ͼ water flow models, it is useful to evaluate the influence area under long-term ( 28 yr) continuous fescue (Festuca arundinacea Schreb.) and blue grass (Poa pratensis L.) was of measured Ksat on modeled runoff. One modeling ap- chosen. The soil is a Mexico silt loam (fine, smectitic, mesic, proach for erosion/runoff prediction is the WEPP. This Aeric Vertic Epiaqualf) formed in loess developed over glacial model has been extensively used for runoff prediction till on a slope of about 3%. The mineralogy of the argillic since 1995 when it was publicly released by the USDA- horizon consists of 38% montmorillonite, 34% quartz, 21% ARS. Although Ksat is not the only factor that affects kaolinite, and 7% illite. Selected soil properties are presented runoff, the WEPP model incorporates the estimated in Table 1. values of hydraulic conductivity as an important soil Three in situ monoliths 250 mm wide by 500 mm long by attribute to predict runoff (Flanagan and Nearing, 230 mm deep (the depth to claypan) were constructed. Depth 1995). The WEPP uses K values for surface layers, to the claypan was determined by obtaining 20-mm diam. soil eff samples using a hand probe. These samples were studied in and internally computes Ksat values for subsurface soil the field for changes in texture and color to determine the layers. Studies indicate that runoff predictions are sensi- depth. Mean (Ϯ SD) depth was 230 Ϯ 7mm(n Ͼ 100). Each tive to the initial Keff values (Ghidey et al., 1999). monolith site was wet for 12 h and then allowed to drain 24 h The objectives of this study are to: (i) measure lateral to soften the soil sufficiently while reducing puddling during in situ Ksat of the 0- to 230-mm depth (above the claypan) construction. A trench was dug around each monolith to form using 250 mm wide by 500 mm long soil monoliths, (ii) a rectangular soil block with intact bottom. The monolith set-up had three compartments: (i) water measure the Ksat with and without bentonite of 76-mm diam. soil cores taken at 100-mm intervals to a depth supply pit, (ii) soil monolith, and (iii) water collection pit. of 2 m, (iii) compare the core K vs. lateral in situ K , Two 6.3-mm steel plates 500 by 700 mm were installed verti- sat sat cally along the two sides of the monolith, which allowed a (iv) compare previously measured Ksat data for Missouri 100-mm of additional length of steel plate at each end. The claypan soils with results of this study, and (v) compare additional length allowed for construction of a water supply measured runoff vs. WEPP predicted runoff using mea- pit and a water collection pit. Two plates 250 by 500 mm sured Keff as a model input to illustrate the benefit of were installed vertically at each end of the border to form a using measured Keff values. rectangular box. The steel plates extended from 150 mm above Table 1. Soil characteristics and land use of the hydraulic conductivity studies.
Recommended publications
  • Soils Section
    Soils Section 2003 Florida Envirothon Study Sections Soil Key Points SOIL KEY POINTS • Recognize soil as an important dynamic resource. • Describe basic soil properties and soil formation factors. • Understand soil drainage classes and know how wetlands are defined. • Determine basic soil properties and limitations, such as mottling and permeability by observing a soil pit or soil profile. • Identify types of soil erosion and discuss methods for reducing erosion. • Use soil information, including a soil survey, in land use planning discussions. • Discuss how soil is a factor in, or is impacted by, nonpoint and point source pollution. Florida’s State Soil Florida has the largest total acreage of sandy, siliceous, hyperthermic Aeric Haplaquods in the nation. This is commonly called Myakka fine sand. It does not occur anywhere else in the United States. There are more than 1.5 million acres of Myakka fine sand in Florida. On May 22, 1989, Governor Bob Martinez signed Senate Bill 525 into law making Myakka fine sand Florida’s official state soil. iii Florida Envirothon Study Packet — Soils Section iv Contents CONTENTS INTRODUCTION .........................................................................................................................1 WHAT IS SOIL AND HOW IS SOIL FORMED? .....................................................................3 SOIL CHARACTERISTICS..........................................................................................................7 Texture......................................................................................................................................7
    [Show full text]
  • Interim Soil Survey of the Gerber Block – Map Unit Descriptions 1
    300A--Norcross very cobbly loam, 0 to 10 percent slopes Map Unit Setting MLRA: 21 Landscape: Tableland Elevation: 4800 to 5400 feet Precipitation: 16 to 20 inches Air temperature: 43 to 45 degrees Fahrenheit Frost-free period: 50 to 80 days Composition Norcross very cobbly ashy loam, 0 to 10 percent slopes--85 percent Casebeer very cobbly loam, 0 to 6 percent slopes--10 percent Rock Outcrop, 15 to 40 percent slopes--5 percent Component Description Norcross and similar soils Landform: Plateaus Parent material: Volcanic ash and residuum weathered from basalt Typical vegetation: low sagebrush, bluebunch wheatgrass, onespike oatgrass, Sandberg bluegrass, Idaho fescue Typical profile: A1--0 to 3 inches; very cobbly ashy loam A2--3 to 6 inches; cobbly ashy loam Bt1--6 to 10 inches; cobbly ashy clay loam Bt2--10 to 18 inches; clay Bt3--18 to 20 inches; clay Bqm--20 to 31 inches; duripan R--31 to 35 inches; unweathered bedrock See "Chemical Properties of Soils" table and the "Physical Properties of Soils" table for more information. Component Properties and Qualities Slope: 0 to 10 percent Runoff: High Depth to Restrictive Feature: Duripan: 12 to 20 inches Bedrock (lithic): 18 to 46 inches Permeability class (root zone): Slow Available water capacity: About 3 inches Present flooding: None Natural drainage class: Well drained Interpretive Groups Nonirrigated land capability: 6e Ecological site: 021XY216OR--Stony Claypan 14-20 Pz Typical soil descriptions including ranges in characteristics are in the "Classification of the Soils" section. Contrasting
    [Show full text]
  • Soil Physics and Agricultural Production
    Conference reports Soil physics and agricultural production by K. Reichardt* Agricultural production depends very much on the behaviour of field soils in relation to crop production, physical properties of the soil, and mainly on those and to develop effective management practices that related to the soil's water holding and transmission improve and conserve the quality and quantity of capacities. These properties affect the availability of agricultural lands. Emphasis is being given to field- water to crops and may, therefore, be responsible for measured soil-water properties that characterize the crop yields. The knowledge of the physical properties water economy of a field, as well as to those that bear of soil is essential in defining and/or improving soil on the quality of the soil solution within the profile water management practices to achieve optimal and that water which leaches below the reach of plant productivity for each soil/climatic condition. In many roots and eventually into ground and surface waters. The parts of the world, crop production is also severely fundamental principles and processes that govern limited by the high salt content of soils and water. the reactions of water and its solutes within soil profiles •Such soils, classified either as saline or sodic/saline are generally well understood. On the other hand, depending on their alkalinity, are capable of supporting the technology to monitor the behaviour of field soils very little vegetative growth. remains poorly defined primarily because of the heterogeneous nature of the landscape. Note was According to statistics released by the Food and taken of the concept of representative elementary soil Agriculture Organization (FAO), the world population volume in defining soil properties, in making soil physical is expected to double by the year 2000 at its current measurements, and in using physical theory in soil-water rate of growth.
    [Show full text]
  • EFFECT of TILLAGE on the HYDROLOGY of CLAYPAN SOILS in KANSAS by MEGHAN ELIZABETH BUCKLEY B.S., Iowa State University, 2002 M.S
    CORE Metadata, citation and similar papers at core.ac.uk Provided by K-State Research Exchange EFFECT OF TILLAGE ON THE HYDROLOGY OF CLAYPAN SOILS IN KANSAS by MEGHAN ELIZABETH BUCKLEY B.S., Iowa State University, 2002 M.S., Kansas State University, 2004 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Agronomy College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2008 Abstract The Parsons soil has a sharp increase in clay content from the upper teens in the A horizon to the mid fifties in the Bt horizon. The high clay content continues to the parent material resulting in 1.5 m of dense, slowly permeable subsoil over shale residuum. This project was designed to better understand soil-water management needs of this soil. The main objective was to determine a comprehensive hydrologic balance for the claypan soil. Specific objectives were a) to determine effect of tillage management on select water balance components including water storage and evaporation, b) to quantify relationship between soil water status and crop variables such as emergence and yield, and c) to verify balance findings with predictions from a mechanistic model, specifically HYDRUS 1-D. The study utilized three replicates of an ongoing project in Labette County, Kansas in which till and no-till plots had been maintained in a sorghum [ Sorghum bicolor (L.) Moench] – soybean [Glycine max (L.) Merr.] rotation since 1995. Both crops are grown each year in a randomized complete block design. The sorghum plots were equipped with Time Domain Reflectometry (TDR) probes to measure A horizon water content and neutron access tubes for measurement of water throughout the profile.
    [Show full text]
  • Fundamentals of Geoenvironmental Engineering
    NPTEL – Civil – Geoenvironmental Engineering Module 1 FUNDAMENTALS OF GEOENVIRONMENTAL ENGINEERING A) Scope of geoenvironmental engineering Any project that deals with the interrelationship among environment, ground surface and subsurface (soil, rock and groundwater) falls under the purview of geoenvironmental engineering (Fang and Daniels 2006). The scope is vast and requires the knowledge of different branches of engineering and science put together to solve the multi-disciplinary problems. A geoenvironmental engineer should work in an open domain of knowledge and should be willing to use any concepts of engineering and science to effectively solve the problem at hand. The most challenging aspect is to identify the unconventional nature of the problem, which may have its bearing on multiple factors. For example, an underground pipe leakage may not be due to the faulty construction of the pipe but caused due to the highly corrosive soil surrounding it. The reason for high corrosiveness may be attributed to single or multiple manmade factors, which need to be clearly identified for the holistic solution of the problem. The conventional approach of assessing the material strength of the pipe alone will not solve the problem at hand. A lot of emphasis has been laid for achieving a “green environment”. Despite a lot of effort, it is very difficult to cut off the harmful effects of pollutants disposed off into the geoenvironment. The damage has already been done to the subsurface and ground water resources, which is precious. An effective waste containment system is one of the solutions to this problem. However, such a project has different socio-economic and technical perspectives.
    [Show full text]
  • Hydraulic Properties in Different Soil Architectures of a Small Agricultural Watershed
    water Article Hydraulic Properties in Different Soil Architectures of a Small Agricultural Watershed: Implications for Runoff Generation Cuiting Dai, Tianwei Wang, Yiwen Zhou, Jun Deng and Zhaoxia Li * College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (C.D.); [email protected] (T.W.); [email protected] (Y.Z.); [email protected] (J.D.) * Correspondence: [email protected] Received: 25 October 2019; Accepted: 26 November 2019; Published: 1 December 2019 Abstract: Soil architecture exerts an important control on soil hydraulic properties and hydrological responses. However, the knowledge of hydraulic properties related to soil architecture is limited. The objective of this study was to investigate the influences of soil architecture on soil physical and hydraulic properties and explore their implications for runoff generation in a small agricultural watershed in the Three Gorges Reservoir Area (TGRA) of southern China. Six types of soil architecture were selected, including shallow loam sandy soil in grassland (SLSG) and shallow loam sandy soil in cropland (SLSC) on the shoulder; shallow sandy loam in grassland (SSLG) and shallow sandy loam in cropland (SSLC) on the backslope; and deep sandy loam in grassland (DSLG) and deep sandy loam in cropland (DSLC) on the footslope. The results showed that saturated hydraulic conductivity 1 (Ksat) was significantly higher in shallow loamy sand soil under grasslands (8.57 cm h− ) than under 1 croplands (7.39 cm h− ) at the topsoil layer. Total porosity was highest for DSLC and lowest for SSLG, averaged across all depths. The proportion of macropores under SLSG was increased by 60% compared with under DSLC, which potentially enhanced water infiltration and decreased surface runoff.
    [Show full text]
  • Introduction to Soil Physics - S.W
    AGRICULTURAL SCIENCES – Vol. I - Introduction to Soil Physics - S.W. Duiker and D.D. Fritton INTRODUCTION TO SOIL PHYSICS S.W. Duiker and D.D. Fritton The Department of Crop and Soil Sciences, Pennsylvania State University, Pennsylvania, USA. Keywords: Soil physics, soil texture, organic matter, bulk density, porosity, infiltration, water holding capacity, soil temperature, erosion, compaction, irrigation, drainage, water use efficiency, systems approach, interdisciplinary Contents 1. The beginning of soil physics 2. Contemporary soil physics 2.1. Theory of soil physics 2.1.1. Solid phase 2.1.2. Liquid phase 2.1.3. Gaseous phase 2.1.4. Heat flow and temperature 2.2. Applications of soil physics 2.2.1. Soil erosion 2.2.2. Soil organic matter management 2.2.3. Soil compaction 2.2.4. Irrigation 2.2.5. Drainage 2.2.6. Water use efficiency 3. The future of soil physics Glossary Bibliography Biographical Sketches Summary Soil physics is the study of the solid, liquid, and gaseous phases of soils and of fluxes of fluids and energy in soils. The solid phase consists of mineral and organic matter. The dominantUNESCO liquid in soils is water, and the– dominant EOLSS gases are similar to those in the atmosphere, except that soils contain more CO2 and water vapor and less O2. Interactions between the three phases in soils determine the movement of fluids and energy. Soil physicsSAMPLE established itself as a scientific CHAPTERS discipline in the early 20th century. Much progress has been made since then in the characterization of the physical properties and processes in soils.
    [Show full text]
  • Earthworms by Clarence Chavez
    Of all the members of the soil food web, earthworms need the least introduction Charles Darwin wrote: “It may be doubted whether there are many other animals which have played so important a part in the history of the world, as have these lowly organized creatures.” Earthworms By Clarence Chavez Where and how many? Count and Sort Dig a hole 1’ X 1’ x 1’ Add Mustard Solution (optional): about 1/2 cup of mustard to 3 or 4 gallons of water. Stir well so that the solution is thoroughly mixed. Pour into the hole. Interpretation of earthworms Earthworm populations may vary with site characteristics (food availability and soil conditions), season, and species. Note: About 10 earthworms per square foot of soil (100 worms/m2) is generally considered a good, higher counts are better. Earthworms - reproduction Earthworms are hermaphrodites, meaning that they exhibit both male and female characteristics. But you still need two to start a colony. Earthworm Cocooning Young worms hatch from their cocoons in three weeks to five months as the gestation period varies for different species of worms. Conditions like temperature and soil moisture factor in here...if conditions are not great then hatching is delayed The ideal temperature is around fifty-five degrees, allowing earthworms to mate in the spring or fall. Earthworms - decomposers Soil and Water Management Research Unit Management Research and Water Soil Earthworms derive their nutrition from dead and decomposing organic matter. Things like decaying roots and leaves, and living organisms such as nematodes, protozoan's, rotifers, bacteria, fungi. They fragment organic matter and make major contributions to recycling the nutrients it contains.
    [Show full text]
  • Effect of Environmental Factors on Pore Water Pressure
    Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 416 Effect of Environmental Factors on Pore Water Pressure in River Bank Sediments, Sollefteå, Sweden Påverkan av miljöfaktorer på porvattentryck i flodbanksediment, Sollefteå, Sverige Hanna Fritzson INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 416 Effect of Environmental Factors on Pore Water Pressure in River Bank Sediments, Sollefteå, Sweden Påverkan av miljöfaktorer på porvattentryck i flodbanksediment, Sollefteå, Sverige Hanna Fritzson ISSN 1650-6553 Copyright © Hanna Fritzson Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2017 Abstract Effect of Environmental Factors on Pore Water Pressure in River Bank Sediments, Sollefteå, Sweden Hanna Fritzson Pore water pressure in a silt slope in Sollefteå, Sweden, was measured from 2009-2016. The results from 2009-2012 were presented and evaluated in a publication by Westerberg et al. (2014) and this report is an extension of that project. In a silt slope the pore water pressures are generally negative, contributing to the stability of the slope. In this report the pore water pressure variations are analyzed using basic statistics and a connection between the pore water pressure variations, the geology and parameters such as temperature, precipitation and soil moisture are discussed. The soils in the slope at Nipuddsvägen consists of sandy silt, silt, clayey silt and silty clay. The main findings were that at 2, 4 and 6 m depth there are significant increases and decreases in the pore water pressure that can be linked with the changing of the seasons, for example there is a significant increase in the spring when the ground frost melts.
    [Show full text]
  • Part 533 – Geotechnical Engineering
    Title 210 – National Engineering Manual Part 533 – Geotechnical Engineering Subpart C – Operations 533.20 General A. Soil mechanics is a branch of soil physics and engineering mechanics that describes the behavior of soils and provides the theoretical basis for analysis in geotechnical engineering. Soil mechanics is the application of the laws and principles of mechanics and hydraulics to engineering problems dealing with soil as an engineering material. The testing of soil’s properties are typically done at a testing laboratory with specialized equipment or can be measured or correlated in the field. Soil mechanics is a subdivision of civil engineering and engineering geology that evaluates the action of forces within a soil mass for natural or artificial structures that are supported on or made of soil. B. Collection and analysis of geotechnical engineering data are essential in the investigation and design of engineering structures. The examination and verification of soil properties during construction are critical. Specialized training and experience in geotechnical engineering are needed due to the many factors which depend on interpretation and judgment of soil related issues. Close coordination is needed between the investigation, soil testing, design, and construction functions. C. Soil mechanics testing provides data for evaluating soil and rock as engineering materials for planning, design, and construction. Test results identify the index, chemical, and engineering properties used in the analysis and design of foundations and earth or earth-supported structures such as dams, buildings, bridge foundations, retaining walls, as well as the support structure of buried pipeline systems. 533.21 Data Collection A. The engineering staff or team that prepares the final design will assist in planning of the geotechnical site investigation, sample selection, and final soil testing program.
    [Show full text]
  • Soil Science 1
    Soil Science 1 Soil Chemistry and Plant Nutrition: Nutrient cycling; nutrient recovery from wastewater; molecular visualization of soil minerals SOIL SCIENCE and molecules; soil acidification. The Department of Soil Science provides undergraduate and graduate Professor William Bleam education in the environmental, agricultural, and natural resource Surface and Colloid Chemistry: Physical chemistry of soil aspects of soils. Areas of emphasis include soil ecology; soil erosion colloids and sorption processes, chemistry of humic substances, management; soil fertility and plant nutrition; soil physical and chemical factors controlling biological availability of contaminants to characterization; biogeochemistry; urban soils; soil carbon; soil health; microorganisms, magnetic resonance and synchrotron studies of soil contaminants; waste management; pedology; and land-use analysis. adsorption and precipitation. Soils are a critical natural resource in environmental protection, food Assistant Professor Zachary Freedman and fiber production, turf and grounds management, rural and urban planning, and waste disposal. All of these facets are integrated into the Soil microbiology, ecology and sustainability: Effects of environmental department's course offerings and research programs. Soil Science change on biogeochemical cycles; community ecology and trophic majors prepare for professional, technical, consulting, and project dynamics; forest soil ecology; soil organic matter dynamics; sustainable positions in environmental sciences, ecology and restoration, crop and agroecosystems; bio-based product crop production on marginal lands. timber production, soil informatics, soil conservation, environmental pollution control, turf and grounds management, and land-use planning. Professor Alfred Hartemink Please contact the department for further information on career Pedology and Digital Soil Mapping: Pedology, soil carbon; digital soil opportunities. mapping; tropical soils; history and philosophy of soil science.
    [Show full text]
  • Sos 314 Course Title: Introduction to Pedology and Soil Physics Number of Units
    http://www.unaab.edu.ng COURSE CODE: SOS 314 COURSE TITLE: INTRODUCTION TO PEDOLOGY AND SOIL PHYSICS NUMBER OF UNITS: 3 Units COURSE DURATION: Two hours per week COURSECOURSE DETAILS:DETAILS: Course Coordinator: Dr. J. K. Adesodun BSc., MSc., PhD Email: [email protected] Office Location: Room 233, COLPLANT Other Lecturers: Dr. B.A Senjobi., Dr. G.A. Ajiboye; Dr. S.J. Akinsete; and Dr. M.A. Busari COURSE CONTENT: Factors and processes of soil formation; rock weathering and common minerals in soil; soil morphological characteristics and profile description; characterization of soils using diagnostic properties; soil survey, mapping and classification. Soil texture and surface area of particles; volume-mass relationships in soil; bulk density; porosity; soil water; hydrological cycle; water balance; water content and water retention; field capacity and permanent wilting point; water flow in soils; energy balance; soil erosion and its control; conservation tillage. Practical: Field: Soil profile description; morphology; texture by feel; colour; horizon designation; sampling soil profile for water content and bulk density determination; comparing soil texture by feel wit texture by particle size distribution, soil temperature measurement in the field COURSE REQUIREMENTS: This is a compulsory course for all students in 300 level of B. Agric program in the University. In view of this, students are expected to participate in all the course activities and have a minimum of 70 % attendance to be able to write the final examination. READING LIST: 1. Fitzpatrick, E.A., 1980. Soils – Their Formation, Classification and Distribution. London: Longman, 353 pp. 2. Fitz Patrick, E.A., 1986. An Introduction to Soil Science, 2nd edn.
    [Show full text]