Biomolecules 2015, 5, 3396-3415; doi:10.3390/biom5043396 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Review A Novel Aspect of Tumorigenesis—BMI1 Functions in Regulating DNA Damage Response Xiaozeng Lin 1,2,3, Diane Ojo 1,2,3, Fengxiang Wei 4, Nicholas Wong 1,2,3, Yan Gu 1,2,3 and Damu Tang 1,2,3,* 1 Department of Medicine, Division of Nephrology, McMaster University, Hamilton, ON L8S 4L8, Canada; E-Mails:
[email protected] (X.L.);
[email protected] (D.O.);
[email protected] (N.W.);
[email protected] (Y.G.) 2 Father Sean O’Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada 3 The Hamilton Center for Kidney Research, St. Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada 4 The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital, Longgang District, Shenzhen 518000, China; E-Mail:
[email protected] * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel.: +1-905-522-1155 (ext. 35168); Fax: +1-905-521-6181. Academic Editors: Wolf-Dietrich Heyer, Thomas Helleday and Fumio Hanaoka Received: 7 August 2015 / Accepted: 26 November 2015 / Published: 1 December 2015 Abstract: BMI1 plays critical roles in maintaining the self-renewal of hematopoietic, neural, intestinal stem cells, and cancer stem cells (CSCs) for a variety of cancer types. BMI1 promotes cell proliferative life span and epithelial to mesenchymal transition (EMT). Upregulation of BMI1 occurs in multiple cancer types and is associated with poor prognosis. Mechanistically, BMI1 is a subunit of the Polycomb repressive complex 1 (PRC1), and binds the catalytic RING2/RING1b subunit to form a functional E3 ubiquitin ligase.