RNF8 Is Not Required for Histone-To-Protamine Exchange in Spermiogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Functions of DNA Damage Factor RNF8 in the Pathogenesis And
Int. J. Biol. Sci. 2019, Vol. 15 909 Ivyspring International Publisher International Journal of Biological Sciences 2019; 15(5): 909-918. doi: 10.7150/ijbs.31972 Review The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer Tingting Zhou 1, Fei Yi 1, Zhuo Wang 1, Qiqiang Guo 1, Jingwei Liu 1, Ning Bai 1, Xiaoman Li 1, Xiang Dong 1, Ling Ren 2, Liu Cao 1, Xiaoyu Song 1 1. Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China 2. Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China Corresponding authors: Xiaoyu Song, e-mail: [email protected] and Liu Cao, e-mail: [email protected]. Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, 110122, China. Tel: +86 24 31939636, Fax: +86 24 31939636. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.12.03; Accepted: 2019.02.08; Published: 2019.03.09 Abstract The really interesting new gene (RING) finger protein 8 (RNF8) is a central factor in DNA double strand break (DSB) signal transduction. -
Gene Regulation and Speciation in House Mice
Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Research Gene regulation and speciation in house mice Katya L. Mack,1 Polly Campbell,2 and Michael W. Nachman1 1Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California 94720-3160, USA; 2Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA One approach to understanding the process of speciation is to characterize the genetic architecture of post-zygotic isolation. As gene regulation requires interactions between loci, negative epistatic interactions between divergent regulatory elements might underlie hybrid incompatibilities and contribute to reproductive isolation. Here, we take advantage of a cross between house mouse subspecies, where hybrid dysfunction is largely unidirectional, to test several key predictions about regulatory divergence and reproductive isolation. Regulatory divergence between Mus musculus musculus and M. m. domesticus was charac- terized by studying allele-specific expression in fertile hybrid males using mRNA-sequencing of whole testes. We found ex- tensive regulatory divergence between M. m. musculus and M. m. domesticus, largely attributable to cis-regulatory changes. When both cis and trans changes occurred, they were observed in opposition much more often than expected under a neutral model, providing strong evidence of widespread compensatory evolution. We also found evidence for lineage-specific positive se- lection on a subset of genes related to transcriptional regulation. Comparisons of fertile and sterile hybrid males identified a set of genes that were uniquely misexpressed in sterile individuals. Lastly, we discovered a nonrandom association between these genes and genes showing evidence of compensatory evolution, consistent with the idea that regulatory interactions might contribute to Dobzhansky-Muller incompatibilities and be important in speciation. -
Androgen Receptor Function Is Required in Sertoli Cells for the Terminal Differentiation of Haploid Spermatids Robert W
Research article 459 Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids Robert W. Holdcraft and Robert E. Braun* University of Washington School of Medicine, Department of Genome Sciences, Seattle, WA 98195, USA *Author for correspondence (e-mail: [email protected]) Accepted 20 October 2003 Development 131, 459-467 Published by The Company of Biologists 2004 doi:10.1242/dev.00957 Summary Androgen receptor function is required for male embryonic and their release from the seminiferous epithelium is AR sexual differentiation, pubertal development and the dependent and maximally sensitive to AR depletion within regulation of spermatogenesis in mammals. During the testis. Cell-specific disruption of Ar in Sertoli cells of spermatogenesis, this requirement is thought to be hypomorphic animals further shows that progression of mediated by Sertoli cells and its genetic and late-round spermatids to elongating steps is sensitive to loss pharmacological disruption is manifested in spermatocytes of Sertoli cell AR function, but that progression through as meiotic arrest. Through studies of a hypomorphic and meiosis and early-round spermatid differentiation are conditional allele of the androgen receptor (Ar) gene, we surprisingly unaffected. have uncovered a dual post-meiotic requirement for androgen receptor activity during male germ cell Supplemental data available online differentiation. Observations in Ar hypomorphic animals demonstrate that terminal differentiation of spermatids Key words: Androgen receptor, Sertoli, Spermatogenesis, Mouse Introduction function from that resulting from the abdominal positioning Androgen receptor (AR) function is essential in males for of the testes. Mice homozygous for a mutation in the proper sexual differentiation and for the maintenance of normal gonadotrophin releasing hormone gene (Gnrh), which have spermatogenesis. -
DNA Damage and Its Links to Neurodegeneration
Neuron Review DNA Damage and Its Links to Neurodegeneration Ram Madabhushi,1,2 Ling Pan,1,2 and Li-Huei Tsai1,2,* 1Picower Institute for Learning and Memory 2Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, Cambridge, MA 02139, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2014.06.034 The integrity of our genetic material is under constant attack from numerous endogenous and exogenous agents. The consequences of a defective DNA damage response are well studied in proliferating cells, espe- cially with regards to the development of cancer, yet its precise roles in the nervous system are relatively poorly understood. Here we attempt to provide a comprehensive overview of the consequences of genomic instability in the nervous system. We highlight the neuropathology of congenital syndromes that result from mutations in DNA repair factors and underscore the importance of the DNA damage response in neural devel- opment. In addition, we describe the findings of recent studies, which reveal that a robust DNA damage response is also intimately connected to aging and the manifestation of age-related neurodegenerative dis- orders such as Alzheimer’s disease and amyotrophic lateral sclerosis. Introduction The Cellular DNA Damage Response Upon analyzing the data collected in the 2000 census, health On any given day, a listing of endogenous DNA damage experi- officials arrived at the remarkable prediction that by the year enced by a typical mammalian cell would read something as fol- 2050, approximately 800,000 Americans would live to see their lows: 200 cytosine deaminations, 3,000 guanine methylations, hundredth birthday (Park, 2010). -
Entropy Based Analysis of Vertebrate Sperm Protamines Sequences: Evidence of Potential Dityrosine and Cysteine-Tyrosine Cross-Linking in Sperm Protamines Christian D
Powell et al. BMC Genomics (2020) 21:277 https://doi.org/10.1186/s12864-020-6681-2 RESEARCH ARTICLE Open Access Entropy based analysis of vertebrate sperm protamines sequences: evidence of potential dityrosine and cysteine-tyrosine cross-linking in sperm protamines Christian D. Powell1,2,DanielC.Kirchoff1, Jason E. DeRouchey1 and Hunter N. B. Moseley2,3,4* Abstract Background: Spermatogenesis is the process by which germ cells develop into spermatozoa in the testis. Sperm protamines are small, arginine-rich nuclear proteins which replace somatic histones during spermatogenesis, allowing a hypercondensed DNA state that leads to a smaller nucleus and facilitating sperm head formation. In eutherian mammals, the protamine-DNA complex is achieved through a combination of intra- and intermolecular cysteine cross-linking and possibly histidine-cysteine zinc ion binding. Most metatherian sperm protamines lack cysteine but perform the same function. This lack of dicysteine cross-linking has made the mechanism behind metatherian protamines folding unclear. Results: Protamine sequences from UniProt’s databases were pulled down and sorted into homologous groups. Multiple sequence alignments were then generated and a gap weighted relative entropy score calculated for each position. For the eutherian alignments, the cysteine containing positions were the most highly conserved. For the metatherian alignment, the tyrosine containing positions were the most highly conserved and corresponded to the cysteine positions in the eutherian alignment. Conclusions: High conservation indicates likely functionally/structurally important residues at these positions in the metatherian protamines and the correspondence with cysteine positions within the eutherian alignment implies a similarity in function. One possible explanation is that the metatherian protamine structure relies upon dityrosine cross-linking between these highly conserved tyrosines. -
Relating Sequence Encoded Information to Form and Function of Intrinsically Disordered Proteins
Available online at www.sciencedirect.com ScienceDirect Relating sequence encoded information to form and function of intrinsically disordered proteins Rahul K Das, Kiersten M Ruff and Rohit V Pappu Intrinsically disordered proteins (IDPs) showcase the of archetypal IDPs. CCRs enable the assignments of importance of conformational plasticity and heterogeneity in conformational descriptors and inferences regarding the protein function. We summarize recent advances that connect amplitudes of conformational fluctuations of IDPs. These information encoded in IDP sequences to their conformational insights are relevant because amino acid compositions are properties and functions. We focus on insights obtained often well conserved among orthologs of IDPs even if their through a combination of atomistic simulations and biophysical sequences are poorly conserved [42,43]. measurements that are synthesized into a coherent framework using polymer physics theories. Compositional classes of IDPs Address Amino acid compositions of IDPs are characterized by Department of Biomedical Engineering and Center for Biological distinct biases [5]. They are deficient in canonical hydro- Systems Engineering, Washington University in St. Louis, One Brookings phobic residues and enriched in polar and charged resi- Drive, Campus Box 1097, St. Louis, MO 63130, USA dues. Accordingly, IDPs fall into three distinct compositional classes that reflect the fraction of charged Corresponding author: Pappu, Rohit V ([email protected]) versus polar residues. The distinct classes are polar tracts, polyampholytes, and polyelectrolytes [41] (see Figure 1). Polar Current Opinion in Structural Biology 2015, 32:102–112 tracts are deficient in charged, hydrophobic, and proline residues. They are enriched in polar amino acids such as This review comes from a themed issue on Sequences and topology Asn, Gly, Gln, His, Ser, and Thr. -
Premature Translation of Protamine 1 Mrna Causes Precocious Nuclear Condensation and Arrests Spermatid Differentiation in Mice KEESOOK LEE*T, HARALD S
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 12451-12455, December 1995 Developmental Biology Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice KEESOOK LEE*t, HARALD S. HAUGENt, CHRISTOPHER H. CLEGGt, AND ROBERT E. BRAUN*§ *University of Washington, Department of Genetics, Box 357360, Seattle, WA 98195-7360; and tBristol-Myers Squibb Pharmaceutical Research, 3005 First Avenue, Seattle, WA 98121 Communicated by Richard D. Palmiter, University of Washington School of Medicine, Seattle, WA, September 14, 1995 ABSTRACT Translational control is a major form of translational repression, although direct proof that they func- regulating gene expression during gametogenesis and early tion as translational repressors in vivo has not yet been development in many organisms. We sought to determine demonstrated (14, 15). whether the translational repression of the protamine 1 An important and unanswered question in sperm morpho- (Prml) mRNA is necessary for normal spermatid differenti- genesis is whether the temporal expression of the testis nuclear ation in mice. To accomplish this we generated transgenic basic proteins is actually necessary for normal spermatid animals that carry a Prml transgene lacking its normal 3' differentiation. To address the importance of the translational untranslated region. Premature translation of Prml mRNA repression of Prml mRNA, we generated transgenic mice that caused precocious condensation of spermatid nuclear DNA, fail to delay Prml mRNA translation. We show that premature abnormal head morphogenesis, and incomplete processing of translation of Prml mRNA causes precocious condensation of Prm2 protein. Premature accumulation of Prml within syn- nuclear DNA and a failure to complete spermatid differenti- cytial spermatids in mice hemizygous for the transgene caused ation, resulting in sterility. -
RNF168 Ubiquitylates 53BP1 and Controls Its Response to DNA Double-Strand Breaks
RNF168 ubiquitylates 53BP1 and controls its response to DNA double-strand breaks Miyuki Bohgakia,b,1, Toshiyuki Bohgakia,b,1, Samah El Ghamrasnia,b, Tharan Srikumara,b, Georges Mairec, Stephanie Panierd, Amélie Fradet-Turcotted, Grant S. Stewarte, Brian Raughta,b, Anne Hakema,b, and Razqallah Hakema,b,2 aOntario Cancer Institute, University Health Network and bDepartment of Medical Biophysics, University of Toronto, Toronto, M5G 2M9 ON, Canada; cThe Hospital for Sick Children, Toronto, M5G 2L3 ON, Canada; dDepartment of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; and eCancer Research UK, Institute for Cancer Studies, Birmingham University, Birmingham B15 2TT, United Kingdom Edited* by Stephen J. Elledge, Harvard Medical School, Boston, MA, and approved November 14, 2013 (received for review October 30, 2013) Defective signaling or repair of DNA double-strand breaks has X–MDC1–RNF8 axis, RNF168 also functions in DSB signaling been associated with developmental defects and human diseases. independently of this pathway. Therefore, we postulated that The E3 ligase RING finger 168 (RNF168), mutated in the human RNF168 also might regulate DSB signaling through direct radiosensitivity, immunodeficiency, dysmorphic features, and modulation of 53BP1 functions. learning difficulties syndrome, was shown to ubiquitylate H2A- In the present study, we demonstrate that RNF168 associates γ – – type histones, and this ubiquitylation was proposed to facilitate with 53BP1 independently of the -H2A.X MDC1 RNF8 sig- the recruitment of p53-binding protein 1 (53BP1) to the sites of naling axis. RNF168 ubiquitylates 53BP1 before its localization DNA double-strand breaks. In contrast to more upstream proteins to DSB sites, and this ubiquitylation is important for the initial signaling DNA double-strand breaks (e.g., RNF8), deficiency of recruitment of 53BP1 to DSB sites and its function in non- homologous end joining (NHEJ) and activation of checkpoints. -
MDC1 and RNF8 Function in a Pathway That Directs BRCA1
Research Article 6049 MDC1 and RNF8 function in a pathway that directs BRCA1-dependent localization of PALB2 required for homologous recombination Fan Zhang1, Gregory Bick1, Jung-Young Park1 and Paul R. Andreassen1,2,* 1Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH 45229, USA 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA *Author for correspondence ([email protected]) Accepted 6 September 2012 Journal of Cell Science 125, 6049–6057 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.111872 Summary The PALB2 protein is associated with breast cancer susceptibility and Fanconi anemia. Notably, PALB2 is also required for DNA repair by homologous recombination (HR). However, the mechanisms that regulate PALB2, and the functional significance of its interaction with the BRCA1 breast cancer susceptibility protein, are poorly understood. Here, to better understand these processes, we fused PALB2, or the PALB2(L21P) mutant which cannot bind to BRCA1, with the BRCT repeats that are present in, and which localize, BRCA1. Our results yield important insights into the regulation of PALB2 function. Both fusion proteins can bypass BRCA1 to localize to sites of DNA damage. Further, the localized fusion proteins are functional, as determined by their ability to support the assembly of RAD51 foci, even in the absence of the capacity of PALB2 to bind BRCA1. Strikingly, the localized fusion proteins mediate DNA double-strand break (DSB)-initiated HR and resistance to mitomycin C in PALB2-deficient cells. Additionally, we show that the BRCA1–PALB2 heterodimer, rather than the PALB2–PALB2 homodimer, mediates these responses. -
Identification of the Interactors of Human Nibrin (NBN) and of Its 26 Kda and 70 Kda Fragments Arising from the NBN 657Del5 Founder Mutation
RESEARCH ARTICLE Identification of the Interactors of Human Nibrin (NBN) and of Its 26 kDa and 70 kDa Fragments Arising from the NBN 657del5 Founder Mutation Domenica Cilli1., Cristiana Mirasole2., Rosa Pennisi1, Valeria Pallotta2, Angelo D’Alessandro2, Antonio Antoccia1,3, Lello Zolla2, Paolo Ascenzi3,4, Alessandra di Masi1,3* 1. Department of Science, Roma Tre University, Rome, Italy, 2. Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy, 3. Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy, 4. Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Rome, Italy *[email protected] . These authors contributed equally to this work. OPEN ACCESS Citation: Cilli D, Mirasole C, Pennisi R, Pallotta V, Abstract D’Alessandro A, et al. (2014) Identification of the Interactors of Human Nibrin (NBN) and of Its 26 Nibrin (also named NBN or NBS1) is a component of the MRE11/RAD50/NBN kDa and 70 kDa Fragments Arising from the NBN complex, which is involved in early steps of DNA double strand breaks sensing and 657del5 Founder Mutation. PLoS ONE 9(12): e114651. doi:10.1371/journal.pone.0114651 repair. Mutations within the NBN gene are responsible for the Nijmegen breakage Editor: Sue Cotterill, St. Georges University of syndrome (NBS). The 90% of NBS patients are homozygous for the 657del5 London, United Kingdom mutation, which determines the synthesis of two truncated proteins of 26 kDa (p26) Received: October 28, 2013 and 70 kDa (p70). Here, HEK293 cells have been exploited to transiently express Accepted: November 12, 2014 either the full-length NBN protein or the p26 or p70 fragments, followed by affinity Published: December 8, 2014 chromatography enrichment of the eluates. -
Evidence for the Evolutionary Origin of Human Chromosome 21 From
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 154-158, January 1991 Genetics Evidence for the evolutionary origin of human chromosome 21 from comparative gene mapping in the cow and mouse (hybrid somatic cell analysis/Bos tarus/Mus musculus) DEBORAH S. THREADGILL*, JAN P. KRAUSt, STEPHEN A. KRAWETZt, AND JAMES E. WOMACK*§ *Department of Veterinary Pathology, Texas A&M University, College Station, TX 77843; tDepartment of Pediatrics and Cellular/Structural Biology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262; and tDepartment of Molecular Biology and Genetics, School of Medicine, Gordon H. Scott Hall, Wayne State University, 540 East Canfield, Detroit, MI 48202 Communicated by Neal L. First, October 1, 1990 (receivedfor review July 27, 1990) ABSTRACT To determine the extent of conservation be- has not been reported for any species other than the mouse. tween bovine syntenic group U1O, human chromosome 21 In the absence of greater comparative mapping data, the (HSA 21), and mouse chromosome 16 (MMU 16), 11 genes were ancestral relationship of HSA 21 and MMU 16 cannot be physically mapped by segregation analysis in a bovine-hamsuter resolved. Mapping of the loci from HSA 21 and MMU 16 in hybrid somatic cell panel. The genes chosen for study span a third mammalian taxon such as the bovine, however, could MMU 16 and represent virtually the entire q arm of HSA 21. provide important information about the evolution ofHSA 21 Because the somatostatin gene (SST), an HSA 3/MMU 16 and MMU 16 from an ancestral mammalian chromosome. locus, was previously shown tube in U1O, the trnsferrin gene The three species are thought to have been separated from (TF), an HSA 3/MMU 9 marker, was also mapped to deter- each other for 80 million years, and genes syntenic in two of mine whether U10 contains any HSA 3 genes not represented the three species are assumed to represent the ancestral on MMU 16. -
Comparative Genomics Reveals Gene-Specific and Shared Regulatory Sequences in the Spermatid-Expressed Mammalian Odf1, Prm1, Prm2
Genomics 92 (2008) 101–106 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Comparative genomics reveals gene-specific and shared regulatory sequences in the spermatid-expressed mammalian Odf1, Prm1, Prm2, Tnp1, and Tnp2 genes☆ Kenneth C. Kleene ⁎, Jana Bagarova Department of Biology, University of Massachusetts at Boston, Boston, MA 02125, USA ARTICLE INFO ABSTRACT Article history: The comparative genomics of the Odf1, Prm1, Prm2, Tnp1, and Tnp2 genes in 13–21 diverse mammalian Received 6 January 2008 species reveals striking similarities and differences in the sequences that probably function in the Accepted 1 May 2008 transcriptional and translational regulation of gene expression in haploid spermatogenic cells, spermatids. Available online 17 June 2008 The 5′ flanking regions contain putative TATA boxes and cAMP-response elements (CREs), but the TATA boxes and CREs exhibit gene-specific sequences, and an overwhelming majority of CREs differ from the consensus Keywords: ′ ′ fi Comparative genomics sequence. The 5 and 3 UTRs contain highly conserved gene-speci c sequences including canonical and Translational regulation noncanonical poly(A) signals and a suboptimal context for the Tnp2 translation initiation codon. The Spermatid conservation of the 5′ UTR is unexpected because mRNA translation in spermatids is thought to be regulated Protamine primarily by the 3′ UTR. Finally, all of the genes contain a single intron, implying that retroposons are rarely Transition protein created from mRNAs that are expressed in spermatids. Outer dense fiber 1 © 2008 Elsevier Inc. All rights reserved. TATA box CREMτ Noncanonical poly(A) signal Retroposon Introduction [4]. The importance of delaying translation is demonstrated by reports that premature translation of the Prm1 and Tnp2 mRNAs in round The haploid, differentiation phase of spermatogenesis in mammals spermatids in transgenic mice impairs male fertility [5,6].