Rad18 and Rnf8 Facilitate Homologous Recombination by Two Distinct Mechanisms, Promoting Rad51 Focus Formation and Suppressing T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction of Human Telomerase Reverse Transcriptase to Normal Human Fibroblasts Enhances DNA Repair Capacity
Vol. 10, 2551–2560, April 1, 2004 Clinical Cancer Research 2551 Introduction of Human Telomerase Reverse Transcriptase to Normal Human Fibroblasts Enhances DNA Repair Capacity Ki-Hyuk Shin,1 Mo K. Kang,1 Erica Dicterow,1 INTRODUCTION Ayako Kameta,1 Marcel A. Baluda,1 and Telomerase, which consists of the catalytic protein subunit, No-Hee Park1,2 human telomerase reverse transcriptase (hTERT), the RNA component of telomerase (hTR), and several associated pro- 1School of Dentistry and 2Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California teins, has been primarily associated with maintaining the integ- rity of cellular DNA telomeres in normal cells (1, 2). Telomer- ase activity is correlated with the expression of hTERT, but not ABSTRACT with that of hTR (3, 4). Purpose: From numerous reports on proteins involved The involvement of DNA repair proteins in telomere main- in DNA repair and telomere maintenance that physically tenance has been well documented (5–8). In eukaryotic cells, associate with human telomerase reverse transcriptase nonhomologous end-joining requires a DNA ligase and the (hTERT), we inferred that hTERT/telomerase might play a DNA-activated protein kinase, which is recruited to the DNA role in DNA repair. We investigated this possibility in nor- ends by the DNA-binding protein Ku. Ku binds to hTERT mal human oral fibroblasts (NHOF) with and without ec- without the need for telomeric DNA or hTR (9), binds the topic expression of hTERT/telomerase. telomere repeat-binding proteins TRF1 (10) and TRF2 (11), and Experimental Design: To study the effect of hTERT/ is thought to regulate the access of telomerase to telomere DNA telomerase on DNA repair, we examined the mutation fre- ends (12, 13). -
The Functions of DNA Damage Factor RNF8 in the Pathogenesis And
Int. J. Biol. Sci. 2019, Vol. 15 909 Ivyspring International Publisher International Journal of Biological Sciences 2019; 15(5): 909-918. doi: 10.7150/ijbs.31972 Review The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer Tingting Zhou 1, Fei Yi 1, Zhuo Wang 1, Qiqiang Guo 1, Jingwei Liu 1, Ning Bai 1, Xiaoman Li 1, Xiang Dong 1, Ling Ren 2, Liu Cao 1, Xiaoyu Song 1 1. Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China 2. Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China Corresponding authors: Xiaoyu Song, e-mail: [email protected] and Liu Cao, e-mail: [email protected]. Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, 110122, China. Tel: +86 24 31939636, Fax: +86 24 31939636. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.12.03; Accepted: 2019.02.08; Published: 2019.03.09 Abstract The really interesting new gene (RING) finger protein 8 (RNF8) is a central factor in DNA double strand break (DSB) signal transduction. -
Novel Roles of Replication Protein a Phosphorylation in Cellular Response to DNA Damage Moises A
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2013 Novel Roles of Replication Protein A Phosphorylation in Cellular Response to DNA Damage Moises A. Serrano East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Laboratory and Basic Science Research Commons Recommended Citation Serrano, Moises A., "Novel Roles of Replication Protein A Phosphorylation in Cellular Response to DNA Damage" (2013). Electronic Theses and Dissertations. Paper 1206. https://dc.etsu.edu/etd/1206 This Dissertation - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Novel Roles of Replication Protein A Phosphorylation in the Cellular Response to DNA Damage _____________________________ A dissertation presented to the faculty of the Department of Biomedical Science East Tennessee State University In partial fulfillment of the requirements for the degree Doctor of Philosophy in Biomedical Science _____________________________ by Moises Alejandro Serrano August 2013 _____________________________ Yue Zou, Ph.D., Chair Phillip R. Musich, Ph.D. Antonio E. Rusiñol, Ph.D. Michelle M. Duffourc, Ph.D. William L. Stone, Ph.D. Keywords: DNA Repair, DNA Damage Responses, RPA, p53, Apoptosis ABSTRACT Novel Roles of Replication Protein A Phosphorylation in Cellular Response to DNA Damage by Moises Alejandro Serrano Human replication protein A (RPA) is an eukaryotic single-stranded DNA binding protein directly involved in a variety of DNA metabolic pathways including replication, recombination, DNA damage checkpoints and signaling, as well as all DNA repair pathways. -
Structure and Function of the Human Recq DNA Helicases
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability. -
Plugged Into the Ku-DNA Hub: the NHEJ Network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou
Plugged into the Ku-DNA hub: The NHEJ network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou To cite this version: Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou. Plugged into the Ku-DNA hub: The NHEJ network. Progress in Biophysics and Molecular Biology, Elsevier, 2019, 147, pp.62-76. 10.1016/j.pbiomolbio.2019.03.001. hal-02144114 HAL Id: hal-02144114 https://hal.archives-ouvertes.fr/hal-02144114 Submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Progress in Biophysics and Molecular Biology xxx (xxxx) xxx Contents lists available at ScienceDirect Progress in Biophysics and Molecular Biology journal homepage: www.elsevier.com/locate/pbiomolbio Plugged into the Ku-DNA hub: The NHEJ network * Philippe Frit a, b, Virginie Ropars c, Mauro Modesti d, e, Jean Baptiste Charbonnier c, , ** Patrick Calsou a, b, a Institut de Pharmacologie et Biologie Structurale, IPBS, Universite de Toulouse, CNRS, UPS, Toulouse, France b Equipe Labellisee Ligue Contre -
Ubiquitination Is Not Omnipresent in Myeloid Leukemia Ramesh C
Editorials Ubiquitination is not omnipresent in myeloid leukemia Ramesh C. Nayak1 and Jose A. Cancelas1,2 1Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center and 2Hoxworth Blood Center, University of Cincinnati Academic Health Center, Cincinnati, OH, USA E-mail: JOSE A. CANCELAS - [email protected] / [email protected] doi:10.3324/haematol.2019.224162 hronic myelogenous leukemia (CML) is a clonal tination of target proteins through their cognate E3 ubiq- biphasic hematopoietic disorder most frequently uitin ligases belonging to three different families (RING, Ccaused by the expression of the BCR-ABL fusion HERCT, RING-between-RING or RBR type E3).7 protein. The expression of BCR-ABL fusion protein with The ubiquitin conjugating enzymes including UBE2N constitutive and elevated tyrosine kinase activity is suffi- (UBC13) and UBE2C are over-expressed in a myriad of cient to induce transformation of hematopoietic stem tumors such as breast, pancreas, colon, prostate, lym- cells (HSC) and the development of CML.1 Despite the phoma, and ovarian carcinomas.8 Higher expression of introduction of tyrosine kinase inhibitors (TKI), the dis- UBE2A is associated with poor prognosis of hepatocellu- ease may progress from a manageable chronic phase to a lar cancer.9 In leukemia, bone marrow (BM) cells from clinically challenging blast crisis phase with a poor prog- pediatric acute lymphoblastic patients show higher levels nosis,2 in which myeloid or lymphoid blasts fail to differ- of UBE2Q2 -
DNA Damage and Its Links to Neurodegeneration
Neuron Review DNA Damage and Its Links to Neurodegeneration Ram Madabhushi,1,2 Ling Pan,1,2 and Li-Huei Tsai1,2,* 1Picower Institute for Learning and Memory 2Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, Cambridge, MA 02139, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2014.06.034 The integrity of our genetic material is under constant attack from numerous endogenous and exogenous agents. The consequences of a defective DNA damage response are well studied in proliferating cells, espe- cially with regards to the development of cancer, yet its precise roles in the nervous system are relatively poorly understood. Here we attempt to provide a comprehensive overview of the consequences of genomic instability in the nervous system. We highlight the neuropathology of congenital syndromes that result from mutations in DNA repair factors and underscore the importance of the DNA damage response in neural devel- opment. In addition, we describe the findings of recent studies, which reveal that a robust DNA damage response is also intimately connected to aging and the manifestation of age-related neurodegenerative dis- orders such as Alzheimer’s disease and amyotrophic lateral sclerosis. Introduction The Cellular DNA Damage Response Upon analyzing the data collected in the 2000 census, health On any given day, a listing of endogenous DNA damage experi- officials arrived at the remarkable prediction that by the year enced by a typical mammalian cell would read something as fol- 2050, approximately 800,000 Americans would live to see their lows: 200 cytosine deaminations, 3,000 guanine methylations, hundredth birthday (Park, 2010). -
Proteomic Analysis of the Rad18 Interaction Network in DT40 – a Chicken B Cell Line
Proteomic analysis of the Rad18 interaction network in DT40 – a chicken B cell line Thesis submitted for the degree of Doctor of Natural Sciences at the Faculty of Biology, Ludwig-Maximilians-University Munich 15th January, 2009 Submitted by Sushmita Gowri Sreekumar Chennai, India Completed at the Helmholtz Zentrum München German Research Center for Environmental Health Institute of Clinical Molecular Biology and Tumor Genetics, Munich Examiners: PD Dr. Berit Jungnickel Prof. Heinrich Leonhardt Prof. Friederike Eckardt-Schupp Prof. Harry MacWilliams Date of Examination: 16th June 2009 To my Parents, Sister, Brother & Rajesh Table of Contents 1. SUMMARY ........................................................................................................................ 1 2. INTRODUCTION ............................................................................................................. 2 2.1. MECHANISMS OF DNA REPAIR ......................................................................................... 3 2.2. ADAPTIVE GENETIC ALTERATIONS – AN ADVANTAGE ....................................................... 5 2.3. THE PRIMARY IG DIVERSIFICATION DURING EARLY B CELL DEVELOPMENT ...................... 6 2.4. THE SECONDARY IG DIVERSIFICATION PROCESSES IN THE GERMINAL CENTER .................. 7 2.4.1. Processing of AID induced DNA lesions during adaptive immunity .................. 9 2.5. TARGETING OF SOMATIC HYPERMUTATION TO THE IG LOCI ............................................ 10 2.6. ROLE OF THE RAD6 PATHWAY IN IG DIVERSIFICATION -
UBE2B (HR6B) [Untagged] E2 – Ubiquitin Conjugating Enzyme
UBE2B (HR6B) [untagged] E2 – Ubiquitin Conjugating Enzyme Alternate Names: HHR6B, HR6B, RAD6B, Ubiquitin carrier protein B, Ubiquitin protein ligase B Cat. No. 62-0004-100 Quantity: 100 µg Lot. No. 1456 Storage: -70˚C FOR RESEARCH USE ONLY NOT FOR USE IN HUMANS CERTIFICATE OF ANALYSIS Page 1 of 2 Background Physical Characteristics The enzymes of the ubiquitylation Species: human Protein Sequence: pathway play a pivotal role in a num- GPLGSSTPARRRLMRDFKRLQEDPPVGVS ber of cellular processes including Source: E. coli expression GAPSENNIMQWNAVIFGPEGTPFEDGT regulated and targeted proteasomal FKLVIEFSEEYPNKPPTVRFLSKMFHPNVY degradation of substrate proteins. Quantity: 100 μg ADGSICLDILQNRWSPTYDVSSILTSIQSLL DEPNPNSPANSQAAQLYQENKREYEKRV Three classes of enzymes are in- Concentration: 1 mg/ml SAIVEQSWNDS volved in the process of ubiquitylation; activating enzymes (E1s), conjugating Formulation: 50 mM HEPES pH 7.5, enzymes (E2s) and protein ligases 150 mM sodium chloride, 2 mM The residues underlined remain after cleavage and removal of the purification tag. (E3s). UBE2B is a member of the E2 dithiothreitol, 10% glycerol UBE2B (regular text): Start bold italics (amino acid residues ubiquitin-conjugating enzyme family 2-152) and cloning of the human gene was Molecular Weight: ~17 kDa Accession number: NP_003328 first described by Koken et al. (1991). UBE2B shares 70% identity with its Purity: >98% by InstantBlue™ SDS-PAGE yeast homologue but lacks the acidic Stability/Storage: 12 months at -70˚C; C-terminal domain. The ring finger aliquot as required proteins RAD5 and RAD18 interact with UBE2B and other members of the RAD6 pathway (Notenboom et al., Quality Assurance 2007; Ulrich and Jentsch, 2000). In complex UBE2B and RAD18 trigger Purity: Protein Identification: replication fork stalling at DNA dam- 4-12% gradient SDS-PAGE Confirmed by mass spectrometry InstantBlue™ staining age sites during the post replicative Lane 1: MW markers E2-Ubiquitin Thioester Loading Assay: repair process (Tsuji et al., 2008). -
Evolutionary History of Ku Proteins: Evidence of Horizontal Gene Transfer from Archaea to Eukarya
Evolutionary history of Ku proteins: evidence of horizontal gene transfer from archaea to eukarya Ashmita Mainali Kathmandu University Sadikshya Rijal Kathmandu University Hitesh Kumar Bhattarai ( [email protected] ) Kathmandu University https://orcid.org/0000-0002-7147-1411 Research article Keywords: Double Stranded Breaks, Non-homologous End Joining, Maximum Likelihood Phylogenetic tree, domains, Ku protein, origin, evolution Posted Date: October 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-58075/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background The DNA end joining protein, Ku, is essential in Non-Homologous End Joining in prokaryotes and eukaryotes. It was rst discovered in eukaryotes and later by PSI blast, was discovered in prokaryotes. While Ku in eukaryotes is often a multi domain protein functioning in DNA repair of physiological and pathological DNA double stranded breaks, Ku in prokaryotes is a single domain protein functioning in pathological DNA repair in spores or late stationary phase. In this paper we have attempted to systematically search for Ku protein in different phyla of bacteria and archaea as well as in different kingdoms of eukarya. Result From our search of 116 sequenced bacterial genomes, only 25 genomes yielded at least one Ku sequence. From a comprehensive search of all NCBI archaeal genomes, we received a positive hit in 7 specic archaea that possessed Ku. In eukarya, we found Ku protein in 27 out of 59 species. Since the entire genome of all eukaryotic species is not fully sequenced this number could go up. -
DNA Replication Stress Response Involving PLK1, CDC6, POLQ
DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients C. Allera-Moreau, I. Rouquette, B. Lepage, N. Oumouhou, M. Walschaerts, E. Leconte, V. Schilling, K. Gordien, L. Brouchet, Mb Delisle, et al. To cite this version: C. Allera-Moreau, I. Rouquette, B. Lepage, N. Oumouhou, M. Walschaerts, et al.. DNA replica- tion stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis, Nature Publishing Group: Open Access Journals - Option C, 2012, 1, pp.e30. 10.1038/oncsis.2012.29. hal-00817701 HAL Id: hal-00817701 https://hal.archives-ouvertes.fr/hal-00817701 Submitted on 9 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Citation: Oncogenesis (2012) 1, e30; doi:10.1038/oncsis.2012.29 & 2012 Macmillan Publishers Limited All rights reserved 2157-9024/12 www.nature.com/oncsis ORIGINAL ARTICLE DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients C Allera-Moreau1,2,7, I Rouquette2,7, B Lepage3, N Oumouhou3, M Walschaerts4, E Leconte5, V Schilling1, K Gordien2, L Brouchet2, MB Delisle1,2, J Mazieres1,2, JS Hoffmann1, P Pasero6 and C Cazaux1 Lung cancer is the leading cause of cancer deaths worldwide. -
CREB-Binding Protein Regulates Ku70 Acetylation in Response to Ionization Radiation in Neuroblastoma
Published OnlineFirst December 5, 2012; DOI: 10.1158/1541-7786.MCR-12-0065 Molecular Cancer DNA Damage and Repair Research CREB-Binding Protein Regulates Ku70 Acetylation in Response to Ionization Radiation in Neuroblastoma Chitra Subramanian1, Manila Hada2,3, Anthony W. Opipari Jr2, Valerie P. Castle1, and Roland P.S. Kwok2,3 Abstract Ku70 was originally described as an autoantigen, but it also functions as a DNA repair protein in the nucleus and as an antiapoptotic protein by binding to Bax in the cytoplasm, blocking Bax-mediated cell death. In neuroblastoma (NB) cells, Ku70's binding with Bax is regulated by Ku70 acetylation such that increasing Ku70 acetylation results in Bax release, triggering cell death. Although regulating cytoplasmic Ku70 acetylation is important for cell survival, the role of nuclear Ku70 acetylation in DNA repair is unclear. Here, we showed that Ku70 acetylation in the nucleus is regulated by the CREB-binding protein (CBP), and that Ku70 acetylation plays an important role in DNA repair in NB cells. We treated NB cells with ionization radiation and measured DNA repair activity as well as Ku70 acetylation status. Cytoplasmic and nuclear Ku70 were acetylated after ionization radiation in NB cells. Interestingly, cytoplasmic Ku70 was redistributed to the nucleus following irradiation. Depleting CBP in NB cells results in reducing Ku70 acetylation and enhancing DNA repair activity in NB cells, suggesting nuclear Ku70 acetylation may have an inhibitory role in DNA repair. These results provide support for the hypothesis that enhancing Ku70 acetylation, through deacetylase inhibition, may potentiate the effect of ionization radiation in NB cells.