RNF8 Regulates Assembly of RAD51 at DNA Double-Strand Breaks in the Absence of BRCA1 and 53BP1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RB Localizes to DNA Double-Strand Breaks and Promotes DNA End Resection and Homologous Recombination Through the Recruitment of BRG1
Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1 Renier Vélez-Cruz,1 Swarnalatha Manickavinayaham,1 Anup K. Biswas,1,3 Regina Weaks Clary,1,2 Tolkappiyan Premkumar,1,2 Francesca Cole,1,2 and David G. Johnson1,2 1Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA; 2The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77225, USA The retinoblastoma (RB) tumor suppressor is recognized as a master regulator that controls entry into the S phase of the cell cycle. Its loss leads to uncontrolled cell proliferation and is a hallmark of cancer. RB works by binding to members of the E2F family of transcription factors and recruiting chromatin modifiers to the promoters of E2F target genes. Here we show that RB also localizes to DNA double-strand breaks (DSBs) dependent on E2F1 and ATM kinase activity and promotes DSB repair through homologous recombination (HR), and its loss results in genome insta- bility. RB is necessary for the recruitment of the BRG1 ATPase to DSBs, which stimulates DNA end resection and HR. A knock-in mutation of the ATM phosphorylation site on E2F1 (S29A) prevents the interaction between E2F1 and TopBP1 and recruitment of RB, E2F1, and BRG1 to DSBs. This knock-in mutation also impairs DNA repair, increases genomic instability, and renders mice hypersensitive to IR. Importantly, depletion of RB in osteosarcoma and breast cancer cell lines results in sensitivity to DNA-damaging drugs, which is further exacerbated by poly-ADP ribose polymerase (PARP) inhibitors. -
The Functions of DNA Damage Factor RNF8 in the Pathogenesis And
Int. J. Biol. Sci. 2019, Vol. 15 909 Ivyspring International Publisher International Journal of Biological Sciences 2019; 15(5): 909-918. doi: 10.7150/ijbs.31972 Review The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer Tingting Zhou 1, Fei Yi 1, Zhuo Wang 1, Qiqiang Guo 1, Jingwei Liu 1, Ning Bai 1, Xiaoman Li 1, Xiang Dong 1, Ling Ren 2, Liu Cao 1, Xiaoyu Song 1 1. Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China 2. Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China Corresponding authors: Xiaoyu Song, e-mail: [email protected] and Liu Cao, e-mail: [email protected]. Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, 110122, China. Tel: +86 24 31939636, Fax: +86 24 31939636. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.12.03; Accepted: 2019.02.08; Published: 2019.03.09 Abstract The really interesting new gene (RING) finger protein 8 (RNF8) is a central factor in DNA double strand break (DSB) signal transduction. -
DNA Damage and Its Links to Neurodegeneration
Neuron Review DNA Damage and Its Links to Neurodegeneration Ram Madabhushi,1,2 Ling Pan,1,2 and Li-Huei Tsai1,2,* 1Picower Institute for Learning and Memory 2Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, Cambridge, MA 02139, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2014.06.034 The integrity of our genetic material is under constant attack from numerous endogenous and exogenous agents. The consequences of a defective DNA damage response are well studied in proliferating cells, espe- cially with regards to the development of cancer, yet its precise roles in the nervous system are relatively poorly understood. Here we attempt to provide a comprehensive overview of the consequences of genomic instability in the nervous system. We highlight the neuropathology of congenital syndromes that result from mutations in DNA repair factors and underscore the importance of the DNA damage response in neural devel- opment. In addition, we describe the findings of recent studies, which reveal that a robust DNA damage response is also intimately connected to aging and the manifestation of age-related neurodegenerative dis- orders such as Alzheimer’s disease and amyotrophic lateral sclerosis. Introduction The Cellular DNA Damage Response Upon analyzing the data collected in the 2000 census, health On any given day, a listing of endogenous DNA damage experi- officials arrived at the remarkable prediction that by the year enced by a typical mammalian cell would read something as fol- 2050, approximately 800,000 Americans would live to see their lows: 200 cytosine deaminations, 3,000 guanine methylations, hundredth birthday (Park, 2010). -
DNA Damage Induced During Mitosis Undergoes DNA Repair
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.03.893784; this version posted January 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 DNA damage induced during mitosis 2 undergoes DNA repair synthesis 3 4 5 Veronica Gomez Godinez1 ,Sami Kabbara2,3,1a, Adria Sherman1,3, Tao Wu3,4, 6 Shirli Cohen1, Xiangduo Kong5, Jose Luis Maravillas-Montero6,1b, Zhixia Shi1, 7 Daryl Preece,4,3, Kyoko Yokomori5, Michael W. Berns1,2,3,4* 8 9 1Institute of Engineering in Medicine, University of Ca-San Diego, San Diego, California, United 10 States of America 11 12 2Department of Developmental and Cell Biology, University of Ca-Irvine, Irvine, California, United 13 States of America 14 15 3Beckman Laser Institute, University of Ca-Irvine, Irvine, California, United States of America 16 17 4Department of Biomedical Engineering, University of Ca-Irvine, Irvine, California, United States of 18 America 19 20 5Department of Biological Chemistry, University of Ca-Irvine, Irvine, California, United States of 21 America 22 23 6Department of Physiology, University of Ca-Irvine, Irvine, California, United States of America 24 25 1aCurrent Address: Tulane Department of Opthalmology, New Orleans, Louisiana, United States of 26 America 27 28 1bCurrent Address: Universidad Nacional Autonoma de Mexico, Mexico CDMX, Mexico 29 30 31 32 *Corresponding Author 33 34 [email protected](M.W.B) 35 36 37 38 39 40 41 42 43 44 45 46 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.03.893784; this version posted January 3, 2020. -
Insights Into Regulation of Human RAD51 Nucleoprotein Filament Activity During
Insights into Regulation of Human RAD51 Nucleoprotein Filament Activity During Homologous Recombination Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ravindra Bandara Amunugama, B.S. Biophysics Graduate Program The Ohio State University 2011 Dissertation Committee: Richard Fishel PhD, Advisor Jeffrey Parvin MD PhD Charles Bell PhD Michael Poirier PhD Copyright by Ravindra Bandara Amunugama 2011 ABSTRACT Homologous recombination (HR) is a mechanistically conserved pathway that occurs during meiosis and following the formation of DNA double strand breaks (DSBs) induced by exogenous stresses such as ionization radiation. HR is also involved in restoring replication when replication forks have stalled or collapsed. Defective recombination machinery leads to chromosomal instability and predisposition to tumorigenesis. However, unregulated HR repair system also leads to similar outcomes. Fortunately, eukaryotes have evolved elegant HR repair machinery with multiple mediators and regulatory inputs that largely ensures an appropriate outcome. A fundamental step in HR is the homology search and strand exchange catalyzed by the RAD51 recombinase. This process requires the formation of a nucleoprotein filament (NPF) on single-strand DNA (ssDNA). In Chapter 2 of this dissertation I describe work on identification of two residues of human RAD51 (HsRAD51) subunit interface, F129 in the Walker A box and H294 of the L2 ssDNA binding region that are essential residues for salt-induced recombinase activity. Mutation of F129 or H294 leads to loss or reduced DNA induced ATPase activity and formation of a non-functional NPF that eliminates recombinase activity. DNA binding studies indicate that these residues may be essential for sensing the ATP nucleotide for a functional NPF formation. -
RNF168 Ubiquitylates 53BP1 and Controls Its Response to DNA Double-Strand Breaks
RNF168 ubiquitylates 53BP1 and controls its response to DNA double-strand breaks Miyuki Bohgakia,b,1, Toshiyuki Bohgakia,b,1, Samah El Ghamrasnia,b, Tharan Srikumara,b, Georges Mairec, Stephanie Panierd, Amélie Fradet-Turcotted, Grant S. Stewarte, Brian Raughta,b, Anne Hakema,b, and Razqallah Hakema,b,2 aOntario Cancer Institute, University Health Network and bDepartment of Medical Biophysics, University of Toronto, Toronto, M5G 2M9 ON, Canada; cThe Hospital for Sick Children, Toronto, M5G 2L3 ON, Canada; dDepartment of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; and eCancer Research UK, Institute for Cancer Studies, Birmingham University, Birmingham B15 2TT, United Kingdom Edited* by Stephen J. Elledge, Harvard Medical School, Boston, MA, and approved November 14, 2013 (received for review October 30, 2013) Defective signaling or repair of DNA double-strand breaks has X–MDC1–RNF8 axis, RNF168 also functions in DSB signaling been associated with developmental defects and human diseases. independently of this pathway. Therefore, we postulated that The E3 ligase RING finger 168 (RNF168), mutated in the human RNF168 also might regulate DSB signaling through direct radiosensitivity, immunodeficiency, dysmorphic features, and modulation of 53BP1 functions. learning difficulties syndrome, was shown to ubiquitylate H2A- In the present study, we demonstrate that RNF168 associates γ – – type histones, and this ubiquitylation was proposed to facilitate with 53BP1 independently of the -H2A.X MDC1 RNF8 sig- the recruitment of p53-binding protein 1 (53BP1) to the sites of naling axis. RNF168 ubiquitylates 53BP1 before its localization DNA double-strand breaks. In contrast to more upstream proteins to DSB sites, and this ubiquitylation is important for the initial signaling DNA double-strand breaks (e.g., RNF8), deficiency of recruitment of 53BP1 to DSB sites and its function in non- homologous end joining (NHEJ) and activation of checkpoints. -
Error-Prone DNA Repair As Cancer's Achilles' Heel
cancers Review Alternative Non-Homologous End-Joining: Error-Prone DNA Repair as Cancer’s Achilles’ Heel Daniele Caracciolo, Caterina Riillo , Maria Teresa Di Martino , Pierosandro Tagliaferri and Pierfrancesco Tassone * Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, 88100 Catanzaro, Italy; [email protected] (D.C.); [email protected] (C.R.); [email protected] (M.T.D.M.); [email protected] (P.T.) * Correspondence: [email protected] Simple Summary: Cancer onset and progression lead to a high rate of DNA damage, due to replicative and metabolic stress. To survive in this dangerous condition, cancer cells switch the DNA repair machinery from faithful systems to error-prone pathways, strongly increasing the mutational rate that, in turn, supports the disease progression and drug resistance. Although DNA repair de-regulation boosts genomic instability, it represents, at the same time, a critical cancer vulnerability that can be exploited for synthetic lethality-based therapeutic intervention. We here discuss the role of the error-prone DNA repair, named Alternative Non-Homologous End Joining (Alt-NHEJ), as inducer of genomic instability and as a potential therapeutic target. We portray different strategies to drug Alt-NHEJ and discuss future challenges for selecting patients who could benefit from Alt-NHEJ inhibition, with the aim of precision oncology. Abstract: Error-prone DNA repair pathways promote genomic instability which leads to the onset of cancer hallmarks by progressive genetic aberrations in tumor cells. The molecular mechanisms which Citation: Caracciolo, D.; Riillo, C.; Di foster this process remain mostly undefined, and breakthrough advancements are eagerly awaited. Martino, M.T.; Tagliaferri, P.; Tassone, In this context, the alternative non-homologous end joining (Alt-NHEJ) pathway is considered P. -
MDC1 and RNF8 Function in a Pathway That Directs BRCA1
Research Article 6049 MDC1 and RNF8 function in a pathway that directs BRCA1-dependent localization of PALB2 required for homologous recombination Fan Zhang1, Gregory Bick1, Jung-Young Park1 and Paul R. Andreassen1,2,* 1Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH 45229, USA 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA *Author for correspondence ([email protected]) Accepted 6 September 2012 Journal of Cell Science 125, 6049–6057 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.111872 Summary The PALB2 protein is associated with breast cancer susceptibility and Fanconi anemia. Notably, PALB2 is also required for DNA repair by homologous recombination (HR). However, the mechanisms that regulate PALB2, and the functional significance of its interaction with the BRCA1 breast cancer susceptibility protein, are poorly understood. Here, to better understand these processes, we fused PALB2, or the PALB2(L21P) mutant which cannot bind to BRCA1, with the BRCT repeats that are present in, and which localize, BRCA1. Our results yield important insights into the regulation of PALB2 function. Both fusion proteins can bypass BRCA1 to localize to sites of DNA damage. Further, the localized fusion proteins are functional, as determined by their ability to support the assembly of RAD51 foci, even in the absence of the capacity of PALB2 to bind BRCA1. Strikingly, the localized fusion proteins mediate DNA double-strand break (DSB)-initiated HR and resistance to mitomycin C in PALB2-deficient cells. Additionally, we show that the BRCA1–PALB2 heterodimer, rather than the PALB2–PALB2 homodimer, mediates these responses. -
Identification of the Interactors of Human Nibrin (NBN) and of Its 26 Kda and 70 Kda Fragments Arising from the NBN 657Del5 Founder Mutation
RESEARCH ARTICLE Identification of the Interactors of Human Nibrin (NBN) and of Its 26 kDa and 70 kDa Fragments Arising from the NBN 657del5 Founder Mutation Domenica Cilli1., Cristiana Mirasole2., Rosa Pennisi1, Valeria Pallotta2, Angelo D’Alessandro2, Antonio Antoccia1,3, Lello Zolla2, Paolo Ascenzi3,4, Alessandra di Masi1,3* 1. Department of Science, Roma Tre University, Rome, Italy, 2. Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy, 3. Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy, 4. Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Rome, Italy *[email protected] . These authors contributed equally to this work. OPEN ACCESS Citation: Cilli D, Mirasole C, Pennisi R, Pallotta V, Abstract D’Alessandro A, et al. (2014) Identification of the Interactors of Human Nibrin (NBN) and of Its 26 Nibrin (also named NBN or NBS1) is a component of the MRE11/RAD50/NBN kDa and 70 kDa Fragments Arising from the NBN complex, which is involved in early steps of DNA double strand breaks sensing and 657del5 Founder Mutation. PLoS ONE 9(12): e114651. doi:10.1371/journal.pone.0114651 repair. Mutations within the NBN gene are responsible for the Nijmegen breakage Editor: Sue Cotterill, St. Georges University of syndrome (NBS). The 90% of NBS patients are homozygous for the 657del5 London, United Kingdom mutation, which determines the synthesis of two truncated proteins of 26 kDa (p26) Received: October 28, 2013 and 70 kDa (p70). Here, HEK293 cells have been exploited to transiently express Accepted: November 12, 2014 either the full-length NBN protein or the p26 or p70 fragments, followed by affinity Published: December 8, 2014 chromatography enrichment of the eluates. -
Microhomology-Mediated End Joining: a Back-Up Survival Mechanism Or Dedicated Pathway? Agnel Sfeir1,* and Lorraine S
TIBS 1174 No. of Pages 14 Review Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway? Agnel Sfeir1,* and Lorraine S. Symington2,* DNA double-strand breaks (DSBs) disrupt the continuity of chromosomes and Trends their repair by error-free mechanisms is essential to preserve genome integrity. MMEJ is a mutagenic DSB repair Microhomology-mediated end joining (MMEJ) is an error-prone repair mecha- mechanism that uses 1–16 nt of fl nism that involves alignment of microhomologous sequences internal to the homology anking the initiating DSB to align the ends for repair. broken ends before joining, and is associated with deletions and insertions that mark the original break site, as well as chromosome translocations. Whether MMEJ is associated with deletions and insertions that mark the original MMEJ has a physiological role or is simply a back-up repair mechanism is a break site, as well as chromosome matter of debate. Here we review recent findings pertaining to the mechanism of translocations. MMEJ and discuss its role in normal and cancer cells. RPA prevents MMEJ by inhibiting annealing between MHs exposed by Introduction end resection. Our cells are constantly exposed to extrinsic and intrinsic insults that cause several types of DNA Recent studies implicate DNA Polu fl lesions, including highly toxic breaks in icted on both strands of the double helix. To counteract (encoded by PolQ) in a subset of MMEJ the harmful effects of these double-strand breaks (DSBs), cells evolved specialized mechanisms events, particularly those associated to sense and repair DNA damage. The repair of DSBs is required to preserve genetic material, but with insertions at the break site. -
Structural Mechanism of DNA-End Synapsis in the Non- Homologous End Joining Pathway for Repairing Double-Strand Breaks: Bridge Over Troubled Ends
This is a repository copy of Structural mechanism of DNA-end synapsis in the non- homologous end joining pathway for repairing double-strand breaks: bridge over troubled ends. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/154931/ Version: Accepted Version Article: Wu, Q orcid.org/0000-0002-6948-7043 (2019) Structural mechanism of DNA-end synapsis in the non-homologous end joining pathway for repairing double-strand breaks: bridge over troubled ends. Biochemical Society Transactions, 47 (6). pp. 1609-1619. ISSN 0300-5127 https://doi.org/10.1042/bst20180518 © 2019 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society. This is an author produced version of a paper published in Biochemical Society Transactions. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ -
A Novel Role of the Dna2 Translocase Function in DNA Break Resection
Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press A novel role of the Dna2 translocase function in DNA break resection Adam S. Miller,1,4 James M. Daley,1,4 Nhung Tuyet Pham,2 Hengyao Niu,3 Xiaoyu Xue,1 Grzegorz Ira,2 and Patrick Sung1 1Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA; 2Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; 3Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, USA DNA double-strand break repair by homologous recombination entails nucleolytic resection of the 5′ strand at break ends. Dna2, a flap endonuclease with 5′–3′ helicase activity, is involved in the resection process. The Dna2 helicase activity has been implicated in Okazaki fragment processing during DNA replication but is thought to be dispen- sable for DNA end resection. Unexpectedly, we found a requirement for the helicase function of Dna2 in end re- section in budding yeast cells lacking exonuclease 1. Biochemical analysis reveals that ATP hydrolysis-fueled translocation of Dna2 on ssDNA facilitates 5′ flap cleavage near a single-strand–double strand junction while at- tenuating 3′ flap incision. Accordingly, the ATP hydrolysis-defective dna2-K1080E mutant is less able to generate long products in a reconstituted resection system. Our study thus reveals a previously unrecognized role of the Dna2 translocase activity in DNA break end resection and in the imposition of the 5′ strand specificity of end resection. [Keywords: DNA repair; double-strand break; end resection; homologous recombination] Supplemental material is available for this article.