Role of Nibrin in Advanced Ovarian Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RB Localizes to DNA Double-Strand Breaks and Promotes DNA End Resection and Homologous Recombination Through the Recruitment of BRG1
Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1 Renier Vélez-Cruz,1 Swarnalatha Manickavinayaham,1 Anup K. Biswas,1,3 Regina Weaks Clary,1,2 Tolkappiyan Premkumar,1,2 Francesca Cole,1,2 and David G. Johnson1,2 1Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA; 2The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77225, USA The retinoblastoma (RB) tumor suppressor is recognized as a master regulator that controls entry into the S phase of the cell cycle. Its loss leads to uncontrolled cell proliferation and is a hallmark of cancer. RB works by binding to members of the E2F family of transcription factors and recruiting chromatin modifiers to the promoters of E2F target genes. Here we show that RB also localizes to DNA double-strand breaks (DSBs) dependent on E2F1 and ATM kinase activity and promotes DSB repair through homologous recombination (HR), and its loss results in genome insta- bility. RB is necessary for the recruitment of the BRG1 ATPase to DSBs, which stimulates DNA end resection and HR. A knock-in mutation of the ATM phosphorylation site on E2F1 (S29A) prevents the interaction between E2F1 and TopBP1 and recruitment of RB, E2F1, and BRG1 to DSBs. This knock-in mutation also impairs DNA repair, increases genomic instability, and renders mice hypersensitive to IR. Importantly, depletion of RB in osteosarcoma and breast cancer cell lines results in sensitivity to DNA-damaging drugs, which is further exacerbated by poly-ADP ribose polymerase (PARP) inhibitors. -
The Functions of DNA Damage Factor RNF8 in the Pathogenesis And
Int. J. Biol. Sci. 2019, Vol. 15 909 Ivyspring International Publisher International Journal of Biological Sciences 2019; 15(5): 909-918. doi: 10.7150/ijbs.31972 Review The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer Tingting Zhou 1, Fei Yi 1, Zhuo Wang 1, Qiqiang Guo 1, Jingwei Liu 1, Ning Bai 1, Xiaoman Li 1, Xiang Dong 1, Ling Ren 2, Liu Cao 1, Xiaoyu Song 1 1. Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China 2. Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China Corresponding authors: Xiaoyu Song, e-mail: [email protected] and Liu Cao, e-mail: [email protected]. Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, 110122, China. Tel: +86 24 31939636, Fax: +86 24 31939636. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.12.03; Accepted: 2019.02.08; Published: 2019.03.09 Abstract The really interesting new gene (RING) finger protein 8 (RNF8) is a central factor in DNA double strand break (DSB) signal transduction. -
2. the MRN Complex
reviewreview The MRN complex: coordinating and mediating the response to broken chromosomes Michael van den Bosch, Ronan T.Bree & Noel F. Lowndes+ Genome Stability Laboratory, National University of Ireland, Galway, Ireland The MRE11–RAD50–NBS1 (MRN) protein complex has been linked mechanisms by modification and activation of specific repair factors. to many DNA metabolic events that involve DNA double-stranded Alternatively, if the damage is irreparable or an excessive number of breaks (DSBs). In vertebrate cells, all three components are encoded lesions is present, checkpoint signalling is also required to induce by essential genes, and hypomorphic mutations in any of the human apoptotic cell death. The two main mechanisms of DSB repair are genes can result in genome-instability syndromes. MRN is one of the non-homologous end joining (NHEJ) and homologous recombination first factors to be localized to the DNA lesion, where it might initially (HR; Barnes, 2001; van den Bosch et al., 2002). The malfunction have a structural role by tethering together, and therefore stabiliz- of these mechanisms can result in the fusion of DNA ends that were ing, broken chromosomes. This suggests that MRN could function as originally distant from one another in the genome, which generates a lesion-specific sensor. As well as binding to DNA, MRN has other chromosomal rearrangements such as inversions, translocations and roles in both the processing and assembly of large macromolecular deletions. The resulting disruption of gene expression can perturb complexes (known as foci) that facilitate efficient DSB responses. normal cell proliferation or result in cell death. Recently, a novel mediator protein, mediator of DNA damage checkpoint protein 1 (MDC1), was shown to co-immunoprecipitate The MRN complex and the repair of DNA damage with the MRN complex and regulate MRE11 foci formation. -
BASC, a Super Complex of BRCA1-Associated Proteins Involved in the Recognition and Repair of Aberrant DNA Structures
Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures Yi Wang,1,2,6 David Cortez,1,3,6 Parvin Yazdi,1,2 Norma Neff,5 Stephen J. Elledge,1,3,4 and Jun Qin1,2,7 1Verna and Mars McLean Department of Biochemistry and Molecular Biology, 2Department of Cellular and Molecular Biology, 3Howard Hughes Medical Institute, and 4Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 USA; 5Laboratory of Molecular Genetics, New York Blood Center, New York, New York 10021 USA We report the identities of the members of a group of proteins that associate with BRCA1 to form a large complex that we have named BASC (BRCA1-associated genome surveillance complex). This complex includes tumor suppressors and DNA damage repair proteins MSH2, MSH6, MLH1, ATM, BLM, and the RAD50–MRE11–NBS1 protein complex. In addition, DNA replication factor C (RFC), a protein complex that facilitates the loading of PCNA onto DNA, is also part of BASC. We find that BRCA1, the BLM helicase, and the RAD50–MRE11–NBS1 complex colocalize to large nuclear foci that contain PCNA when cells are treated with agents that interfere with DNA synthesis. The association of BRCA1 with MSH2 and MSH6, which are required for transcription-coupled repair, provides a possible explanation for the role of BRCA1 in this pathway. Strikingly, all members of this complex have roles in recognition of abnormal DNA structures or damaged DNA, suggesting that BASC may serve as a sensor for DNA damage. -
NBN Gene Analysis and It's Impact on Breast Cancer
Journal of Medical Systems (2019) 43: 270 https://doi.org/10.1007/s10916-019-1328-z IMAGE & SIGNAL PROCESSING NBN Gene Analysis and it’s Impact on Breast Cancer P. Nithya1 & A. ChandraSekar1 Received: 8 March 2019 /Accepted: 7 May 2019 /Published online: 5 July 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Single Nucleotide Polymorphism (SNP) researches have become essential in finding out the congenital relationship of structural deviations with quantitative traits, heritable diseases and physical responsiveness to different medicines. NBN is a protein coding gene (Breast Cancer); Nibrin is used to fix and rebuild the body from damages caused because of strand breaks (both singular and double) associated with protein nibrin. NBN gene was retrieved from dbSNP/NCBI database and investigated using computational SNP analysis tools. The encrypted region in SNPs (exonal SNPs) were analyzed using software tools, SIFT, Provean, Polyphen, INPS, SNAP and Phd-SNP. The 3’ends of SNPs in un-translated region were also investigated to determine the impact of binding. The association of NBN gene polymorphism leads to several diseases was studied. Four SNPs were predicted to be highly damaged in coding regions which are responsible for the diseases such as, Aplastic Anemia, Nijmegan breakage syndrome, Microsephaly normal intelligence, immune deficiency and hereditary cancer predisposing syndrome (clivar). The present study will be helpful in finding the suitable drugs in future for various diseases especially for breast cancer. Keywords NBN . Single nucleotide polymorphism . Double strand breaks . nsSNP . Associated diseases Introduction NBN has a more complex structure due to its interaction with large proteins formed from the ATM gene which is NBN (Nibrin) is a protein coding gene, it is also known as highly essential in identifying damaged strands of DNA NBS1, Cell cycle regulatory Protein P95, is situated on and facilitating their repair [1]. -
DNA Damage Induced During Mitosis Undergoes DNA Repair
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.03.893784; this version posted January 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 DNA damage induced during mitosis 2 undergoes DNA repair synthesis 3 4 5 Veronica Gomez Godinez1 ,Sami Kabbara2,3,1a, Adria Sherman1,3, Tao Wu3,4, 6 Shirli Cohen1, Xiangduo Kong5, Jose Luis Maravillas-Montero6,1b, Zhixia Shi1, 7 Daryl Preece,4,3, Kyoko Yokomori5, Michael W. Berns1,2,3,4* 8 9 1Institute of Engineering in Medicine, University of Ca-San Diego, San Diego, California, United 10 States of America 11 12 2Department of Developmental and Cell Biology, University of Ca-Irvine, Irvine, California, United 13 States of America 14 15 3Beckman Laser Institute, University of Ca-Irvine, Irvine, California, United States of America 16 17 4Department of Biomedical Engineering, University of Ca-Irvine, Irvine, California, United States of 18 America 19 20 5Department of Biological Chemistry, University of Ca-Irvine, Irvine, California, United States of 21 America 22 23 6Department of Physiology, University of Ca-Irvine, Irvine, California, United States of America 24 25 1aCurrent Address: Tulane Department of Opthalmology, New Orleans, Louisiana, United States of 26 America 27 28 1bCurrent Address: Universidad Nacional Autonoma de Mexico, Mexico CDMX, Mexico 29 30 31 32 *Corresponding Author 33 34 [email protected](M.W.B) 35 36 37 38 39 40 41 42 43 44 45 46 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.03.893784; this version posted January 3, 2020. -
ABSTRACT Title of Document: the FUNCTION of MRN (MRE11-RAD50- NBS1) COMPLEX DURING WRN (WERNER) FACILITATED ATM (ATAXIA- TELANGI
ABSTRACT Title of Document: THE FUNCTION OF MRN (MRE11-RAD50- NBS1) COMPLEX DURING WRN (WERNER) FACILITATED ATM (ATAXIA- TELANGIECTASIA MUTATED) ACTIVATION Junhao Ma, Master of Science, 2009 Directed By: Assistant Professor, Dr. Wen-Hsing Cheng, Department of Nutrition and Food Science WRN (Werner) protein is a member of the RecQ family showing helicase and exonuclease activity. WRN protein may lose function upon mutation and causes Werner syndrome (WS) which is an autosomal recessive, cancer-prone and premature aging disease. ATM (Ataxia-Telangiectasia mutated) protein initiates a signaling pathway in response to DNA double strand breaks (DSBs). Genomic disorder ataxia- telangiectasia (A-T) is associated with defective ATM. WRN protein is involved in ATM pathway activation when cells are exposed to DSBs associated with replication fork collapse. Because the Mre11-Rad50-Nbs1 (MRN) complex, a sensor of DSBs, is known to interact with WRN and ATM, we investigated whether the MRN complex mediates the WRN-dependent ATM pathway activation. In this study, we employed short-hairpin RNA to generate WRN- and Nbs1-deficient U-2 OS (osteosarcoma) cells. Cells were treated with clastogens which induce collapsed replication forks, thus provided proof for whether WRN facilitates ATM activation via MRN complex. This study serves as a basis for future investigation on the correlation between ATM, MRN complex and WRN, which will ultimately help understand the mechanism of aging and cancer. THE FUNCTION OF MRN (MRE11-RAD50-NBS1) COMPLEX DURING WRN (WERNER) FACILITATED ATM (ATAXIA-TELANGIECTASIA MUTATED) ACTIVATION By Junhao Ma Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Science 2009 Advisory Committee: Professor Wen-Hsing Cheng, Chair Professor Mickey Parish Professor Liangli (Lucy) Yu © Copyright by Junhao Ma 2009 Dedication To my daughter Aimi, my wife Yangming, my father and mother. -
Genome Instability and Rad50s: Subtle Yet Severe
Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Genome instability and Rad50S: subtle yet severe Martijn de Jager1 and Roland Kanaar1,2,3 1Department of Cell Biology & Genetics, Erasmus MC, and 2Department of Radiation Oncology, Erasmus MC–Daniel, 3000 DR Rotterdam, The Netherlands In the early 1980s, a primary hurdle on the track to un- Rad50S/S mice derstanding the function of a protein was the isolation of To derive a viable mouse Rad50 allele, Bender et al. its gene. Over the last two decades, we have seen subse- (2002) took their clues from genetic analyses of the quent hurdles in the race to decipher protein function, RAD50 gene from the yeast Saccharomyces cerevisiae. including atomic structure resolution and the creation of RAD50-deficient S.cerevisiae cells are viable but display viable mouse mutants, being cleared at an ever-increas- mitotic and meiotic phenotypes. The cells are sensitive ing pace. The genome surveillance protein Rad50has to the DNA-damaging agent methyl methanesulfonate now leapt over these modern-day hurdles. In the last two (MMS) and are defective in the formation of viable years, rapid progress has been made in understanding spores. Alani et al. (1990) had isolated separation-of- structural aspects of Rad50 (Hopfner et al. 2000, 2001, function (rad50S) alleles of RAD50 that conferred no 2002; de Jager et al. 2001). In this issue of Genes & De- overt MMS sensitivity to the cells, but still blocked vi- velopment, John Petrini and colleagues report on the able spore formation. All of the nine different muta- phenotypes of mice carrying a hypomorphic Rad50 allele tions that resulted in the rad50S phenotype mapped named Rad50S (Bender et al. -
DNA Repair with Its Consequences (E.G
Cell Science at a Glance 515 DNA repair with its consequences (e.g. tolerance and pathways each require a number of apoptosis) as well as direct correction of proteins. By contrast, O-alkylated bases, Oliver Fleck* and Olaf Nielsen* the damage by DNA repair mechanisms, such as O6-methylguanine can be Department of Genetics, Institute of Molecular which may require activation of repaired by the action of a single protein, Biology, University of Copenhagen, Øster checkpoint pathways. There are various O6-methylguanine-DNA Farimagsgade 2A, DK-1353 Copenhagen K, Denmark forms of DNA damage, such as base methyltransferase (MGMT). MGMT *Authors for correspondence (e-mail: modifications, strand breaks, crosslinks removes the alkyl group in a suicide fl[email protected]; [email protected]) and mismatches. There are also reaction by transfer to one of its cysteine numerous DNA repair pathways. Each residues. Photolyases are able to split Journal of Cell Science 117, 515-517 repair pathway is directed to specific Published by The Company of Biologists 2004 covalent bonds of pyrimidine dimers doi:10.1242/jcs.00952 types of damage, and a given type of produced by UV radiation. They bind to damage can be targeted by several a UV lesion in a light-independent Organisms are permanently exposed to pathways. Major DNA repair pathways process, but require light (350-450 nm) endogenous and exogenous agents that are mismatch repair (MMR), nucleotide as an energy source for repair. Another damage DNA. If not repaired, such excision repair (NER), base excision NER-independent pathway that can damage can result in mutations, diseases repair (BER), homologous recombi- remove UV-induced damage, UVER, is and cell death. -
Insights Into Regulation of Human RAD51 Nucleoprotein Filament Activity During
Insights into Regulation of Human RAD51 Nucleoprotein Filament Activity During Homologous Recombination Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ravindra Bandara Amunugama, B.S. Biophysics Graduate Program The Ohio State University 2011 Dissertation Committee: Richard Fishel PhD, Advisor Jeffrey Parvin MD PhD Charles Bell PhD Michael Poirier PhD Copyright by Ravindra Bandara Amunugama 2011 ABSTRACT Homologous recombination (HR) is a mechanistically conserved pathway that occurs during meiosis and following the formation of DNA double strand breaks (DSBs) induced by exogenous stresses such as ionization radiation. HR is also involved in restoring replication when replication forks have stalled or collapsed. Defective recombination machinery leads to chromosomal instability and predisposition to tumorigenesis. However, unregulated HR repair system also leads to similar outcomes. Fortunately, eukaryotes have evolved elegant HR repair machinery with multiple mediators and regulatory inputs that largely ensures an appropriate outcome. A fundamental step in HR is the homology search and strand exchange catalyzed by the RAD51 recombinase. This process requires the formation of a nucleoprotein filament (NPF) on single-strand DNA (ssDNA). In Chapter 2 of this dissertation I describe work on identification of two residues of human RAD51 (HsRAD51) subunit interface, F129 in the Walker A box and H294 of the L2 ssDNA binding region that are essential residues for salt-induced recombinase activity. Mutation of F129 or H294 leads to loss or reduced DNA induced ATPase activity and formation of a non-functional NPF that eliminates recombinase activity. DNA binding studies indicate that these residues may be essential for sensing the ATP nucleotide for a functional NPF formation. -
Suppression of DNA-Damage Checkpoint Signaling by Rsk-Mediated Phosphorylation of Mre11
Suppression of DNA-damage checkpoint signaling by Rsk-mediated phosphorylation of Mre11 Chen Chen, Liguo Zhang, Nai-Jia Huang, Bofu Huang, and Sally Kornbluth1 Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710 Edited by Tony Hunter, The Salk Institute for Biological Studies, La Jolla, CA, and approved November 12, 2013 (received for review April 9, 2013) Ataxia telangiectasia mutant (ATM) is an S/T-Q–directed kinase A hallmark of cancer cells is their ability to override cell-cycle that is critical for the cellular response to double-stranded breaks checkpoints, including the DSB checkpoint, which arrests the cell (DSBs) in DNA. Following DNA damage, ATM is activated and cycle to allow adequate time for damage repair. Previous studies recruited by the MRN protein complex [meiotic recombination 11 have implicated the MAPK pathway in inhibition of DNA-dam- (Mre11)/DNA repair protein Rad50/Nijmegen breakage syndrome age signaling: PKC suppresses DSB-induced G2/M checkpoint 1 proteins] to sites of DNA damage where ATM phosphorylates signaling following ionizing radiation via activation of ERK1/2 multiple substrates to trigger cell-cycle arrest. In cancer cells, this (22); activation of RAF kinase, leading to activation of MEK/ regulation may be faulty, and cell division may proceed even in ERK/Rsk, also can suppress G2/M checkpoint signaling (23). the presence of damaged DNA. We show here that the ribosomal Given its prominent role in multiple cancers, the MAPK s6 kinase (Rsk), often elevated in cancers, can suppress DSB-induced pathway is an attractive therapeutic target. Indeed, treatment of melanoma using the RAF inhibitor vemurafenib has shown some ATM activation in both Xenopus egg extracts and human tumor cell clinical success, as has treatment of nonsmall cell lung carcinoma lines. -
Abnormal Function of Telomere Protein TRF2 Induces Cell Mutation and the Effects of Environmental Tumor‑Promoting Factors (Review)
ONCOLOGY REPORTS 46: 184, 2021 Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review) ZHENGYI WANG1‑3 and XIAOYING WU4 1Good Clinical Practice Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610071; 2Institute of Laboratory Animals of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital; 3Yinglongwan Laboratory Animal Research Institute, Zhonghe Community, High‑Tech Zone, Chengdu, Sichuan 610212; 4Ministry of Education and Training, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China Received March 24, 2021; Accepted June 14, 2021 DOI: 10.3892/or.2021.8135 Abstract. Recent studies have found that somatic gene muta‑ microenvironment, and maintains the stemness characteris‑ tions and environmental tumor‑promoting factors are both tics of tumor cells. TRF2 levels are abnormally elevated by a indispensable for tumor formation. Telomeric repeat‑binding variety of tumor control proteins, which are more conducive factor (TRF)2 is the core component of the telomere shelterin to the protection of telomeres and the survival of tumor cells. complex, which plays an important role in chromosome In brief, the various regulatory mechanisms which tumor cells stability and the maintenance of normal cell physiological rely on to survive are organically integrated around TRF2, states. In recent years, TRF2 and its role in tumor forma‑ forming a regulatory network, which is conducive to the tion have gradually become a research hot topic, which has optimization of the survival direction of heterogeneous tumor promoted in‑depth discussions into tumorigenesis and treat‑ cells, and promotes their survival and adaptability.