DNA Repair with Its Consequences (E.G

Total Page:16

File Type:pdf, Size:1020Kb

DNA Repair with Its Consequences (E.G Cell Science at a Glance 515 DNA repair with its consequences (e.g. tolerance and pathways each require a number of apoptosis) as well as direct correction of proteins. By contrast, O-alkylated bases, Oliver Fleck* and Olaf Nielsen* the damage by DNA repair mechanisms, such as O6-methylguanine can be Department of Genetics, Institute of Molecular which may require activation of repaired by the action of a single protein, Biology, University of Copenhagen, Øster checkpoint pathways. There are various O6-methylguanine-DNA Farimagsgade 2A, DK-1353 Copenhagen K, Denmark forms of DNA damage, such as base methyltransferase (MGMT). MGMT *Authors for correspondence (e-mail: modifications, strand breaks, crosslinks removes the alkyl group in a suicide fl[email protected]; [email protected]) and mismatches. There are also reaction by transfer to one of its cysteine numerous DNA repair pathways. Each residues. Photolyases are able to split Journal of Cell Science 117, 515-517 repair pathway is directed to specific Published by The Company of Biologists 2004 covalent bonds of pyrimidine dimers doi:10.1242/jcs.00952 types of damage, and a given type of produced by UV radiation. They bind to damage can be targeted by several a UV lesion in a light-independent Organisms are permanently exposed to pathways. Major DNA repair pathways process, but require light (350-450 nm) endogenous and exogenous agents that are mismatch repair (MMR), nucleotide as an energy source for repair. Another damage DNA. If not repaired, such excision repair (NER), base excision NER-independent pathway that can damage can result in mutations, diseases repair (BER), homologous recombi- remove UV-induced damage, UVER, is and cell death. The cellular responses to national repair (HR), and non-homolo- present in only a few organisms, such DNA damage include processes that deal gous end joining (NHEJ). These as the yeast Schizosaccharomyces pombe. A key factor in UVER is the endonuclease Uve1/UVDE, which cuts 5′ of various types of damage. Recent work has uncovered novel pathways, Oliver Fleck and Olaf Nielsen such as transcription-coupled BER, break-induced replication, and nucleotide incision repair as well as Crosslinking agents Repair Tolerance Carcinogenic agents Alkylation interconnections between known Replication UV light Alkylation Oxidation Crosslinking Ionizing errors Deamination agents radiation pathways. For simplicity, we do not DNA damage consider these here. Although most me me O G TT<> G G A G = U G Checkpoint Apoptosis repair proteins are usually homologous T AA C C T A G G activation between organisms, their designations Mismatches Pyrimidine OmeG6 8oxoG Crosslinks Cell cycle dimers Loops Bulky adducts 3meA Mismatches Double-strand are often different. Here we generally arrest Crosslinks breaks use the names of human proteins. MMR Photolyases NER MGMT BER HR NHEJ UVER jcs.biologists.org Mismatch repair Mismatch repair (MMR) Nucleotide excision repair (NER) Non-homologous end joining (NHEJ) MSH2 MSH2 MSH2 Global genome Transcription-coupled The main task of MMR is to remove DNA-PKcs MSH6 MSH6 MSH3 repair (GGR) repair (TCR) Ku70 Ku80 G Ku80 Ku70 DNA-PKcs base mismatches and small insertion/ DDB1 XPC T hHR23B DDB2 TT<> AA MRE11 NBS1 AA ol IITT<<> deletion loops (IDLs) introduced during M P RAD50 H2 SH6 A MS RN CSB DNA-P G Kcs CSA Ku70 Ku80 MLH1 PMS2 Ku80 Ku70 replication. In Escherichia coli, the DNA-PKcs Strand discrimination TT<> Mediated by PCNA? TFIIH XPB XPD Pol ? Ligase IV ′ ′ main players in MMR are MutS, MutL 3 -5 exonuclease? XRCC4 Exo1? and MutH. MutH nicks the non- Exo1 Polδε , Pol ERCC1 XPA XPG PCNA XPF RFC, RPA TFIIH XPB RPA XPD methylated strand and thereby enables Ligase I O6-methylguanine-DNA methyltransferase (MGMT) discrimination between the newly e MGMT G m Polδε , Pol RFC, RPA G synthesized strand and the template. C Homologous recombinational repair (HR) PCNA Ligase I C e m MGMT MMR is bidirectional, i.e. nicking and MRE11 NBS1 degradation can occur from either the 5′ RAD50 RPA Base excision repair (BER) or 3′ side of the mismatch. In eukaryotes, RAD52 RAD51 paralogs O G = U several MutS and MutL homologues are RAD51 C G C AP endo involved in MMR; MutH homologues DNA glycosylase DNA glycosylase (bifunctional) (monofunctional) RAD54 C G C appear to be absent. Inactivation of AP endo Pol β AP lyase PCNA human MMR causes hereditary RFC Pol δε/ C G DNA synthesis AP endo Pol β Pol β nonpolyposis colorectal cancer Phosphodiesterase G C C (HNPCC) and some types of sporadic C G Pol β Pol β FEN1 Ligase III dRPase tumor. In the course of human MMR, XRCC1 Ligation Holliday junction Branch migration resolution C G G C base mismatches are bound by the Ligase III Ligase I XRCC1 MutS-homologous heterodimer MSH2- MSH6, while small IDLs can be bound by MSH2-MSH6 and MSH2-MSH3. Journal of Cell Science 2004 (117, pp. 515-517) Subsequently, the MutL-homologous (See poster insert) heterodimer MLH1-PMS2 is recruited. 516 Journal of Cell Science 117 (4) In some eukaryotes additional MutL damaged strand. After binding of XPF- processed by BER, has no biological homologues exist. These form ERCC1, dual incision occurs by XPG consequence. In fact, knockout mice heterodimers with MLH1 and may play and XPF-ERCC1, which cut 3′ and 5′ to lacking factors acting downstream of a minor role in MMR. It is not yet the damage, respectively. In this way, DNA glycosylases exhibit an embryonic understood how eukaryotes distinguish the damage is released in a 24-32 lethal phenotype, while a defect in a between the new and the old strand. nucleotide long oligonucleotide. Repair single DNA glycosylase does not cause Strand discrimination may be either is completed by DNA synthesis and any phenotypic abnormality. mediated by the replication accessory ligation. The typical disorder caused by factor PCNA or could be simply a defect in NER is xeroderma achieved by recognition of nicks, gaps or pigmentosum (XP), while Cockayne Homologous recombinational free 3′ ends that are present in the syndrome (CS) and trichothiodystrophy repair nascent strand during replication. In a (TTD) are due to impaired TCR and in Double-strand breaks (DSBs) can be downstream step, the newly synthesized the latter case eventually also to affected repaired by either HR or NHEJ. HR uses strand is degraded, which removes the transcription. a homologous DNA template and is mismatch. MMR patches are ~100 to highly accurate, whereas NHEJ rejoins >1000 nucleotides in length. EXO1 is the broken ends without using a template involved in 5′ to 3′ excision. It is not yet Base excision repair and is often accompanied by loss of clear which factors participate in 3′ to 5′ BER mainly repairs non-bulky lesions some nucleotides. The relative excision, but DNA Pol δ and ε and produced by alkylation, oxidation or contribution of each pathway depends on EXO1 may be involved. MMR is deamination of bases. Cells contain the cell-cycle stage, with NHEJ being completed after DNA synthesis by the several DNA glycosylases, each of them more active in G1 and HR dominating replication machinery and ligation of the exhibiting a specific substrate spectrum. during S and G2 phases. During HR remaining nick. After cleavage of the N-glycosylic bond DSBs are converted to 3′ single-stranded by a DNA glycosylase, the damaged DNA (ssDNA) tails, which are bound by base is released and an apurinic/ RPA. Processing of DSBs probably Nucleotide excision repair apyrimidinic (AP site) is created. An AP requires MRE11-RAD50-NBS1. NER removes a variety of forms of DNA site can also occur spontaneously and RAD52 interacts with RPA and damage, including photoproducts represents damage itself. Bifunctional promotes binding of RAD51 to the induced by UV and other bulky lesions. glycosylases have an intrinsic AP lyase ssDNA, which may be stabilized by NER consists of two subpathways: activity, which cleaves the sugar- RAD51 paralogues (RAD51B, global genome repair (GGR), which phosphate backbone 3′ to the AP site. RAD51C, RAD51D, XRCC2 and removes damage in the genome overall The resulting fragmented sugar residue XRCC3 in human, RAD55 and RAD57 and transcription-coupled repair (TCR), is removed by a phosphodiesterase in yeast). Subsequently, the RAD51- which specifically repairs the transcribed activity, contributed by either an AP bound ssDNA invades a homologous strand of active genes. The main endonuclease or by DNA polymerase β. molecule in a reaction stimulated by difference between GGR and TCR is the The one-nucleotide gap is filled by Pol β RAD54. After DNA synthesis and requirement for different factors during and ligated. Processing of AP sites ligation, two Holliday junctions are the initial recognition steps. UV-DDB, produced by a monofunctional DNA formed and branch migration can occur. consisting of DDB1 and DDB2, and glycosylase requires 5′ incision by an AP The Holliday junctions are finally XPC-hHR23B are involved in the endonuclease (the major human AP resolved by resolvases, which in recognition step of GGR, while TCR is endonuclease is APE1). Pol β eukaryotes are not yet identified. thought to be initiated by RNA incorporates a nucleotide and its polymerase II stalled at a lesion. deoxyribophosphodiesterase (dRPase) HR also represents an error-free Additional factors required for TCR are activity removes the 5′ moiety. The subpathway of damage tolerance, CSA and CSB. The proteins acting remaining nick is sealed by ligation. allowing replicational bypass of lesions further downstream in GGR and TCR During a minor, long-patch BER through a template switch. Alternatively, are likely to be identical. First, pathway, 2-8 nucleotides are removed damage tolerance can be achieved by transcription factor IIH (TFIIH), a together with the damaged nucleotide. error-free and error-prone translesion complex consisting of nine subunits, is Long-patch BER may be required in the synthesis carried out by specialized recruited to the damaged site.
Recommended publications
  • The Functions of DNA Damage Factor RNF8 in the Pathogenesis And
    Int. J. Biol. Sci. 2019, Vol. 15 909 Ivyspring International Publisher International Journal of Biological Sciences 2019; 15(5): 909-918. doi: 10.7150/ijbs.31972 Review The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer Tingting Zhou 1, Fei Yi 1, Zhuo Wang 1, Qiqiang Guo 1, Jingwei Liu 1, Ning Bai 1, Xiaoman Li 1, Xiang Dong 1, Ling Ren 2, Liu Cao 1, Xiaoyu Song 1 1. Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China 2. Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China Corresponding authors: Xiaoyu Song, e-mail: [email protected] and Liu Cao, e-mail: [email protected]. Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, 110122, China. Tel: +86 24 31939636, Fax: +86 24 31939636. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.12.03; Accepted: 2019.02.08; Published: 2019.03.09 Abstract The really interesting new gene (RING) finger protein 8 (RNF8) is a central factor in DNA double strand break (DSB) signal transduction.
    [Show full text]
  • Deficiency in the DNA Repair Protein ERCC1 Triggers a Link Between Senescence and Apoptosis in Human Fibroblasts and Mouse Skin
    Lawrence Berkeley National Laboratory Recent Work Title Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Permalink https://escholarship.org/uc/item/73j1s4d1 Journal Aging cell, 19(3) ISSN 1474-9718 Authors Kim, Dong Eun Dollé, Martijn ET Vermeij, Wilbert P et al. Publication Date 2020-03-01 DOI 10.1111/acel.13072 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received: 10 June 2019 | Revised: 7 October 2019 | Accepted: 30 October 2019 DOI: 10.1111/acel.13072 ORIGINAL ARTICLE Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin Dong Eun Kim1 | Martijn E. T. Dollé2 | Wilbert P. Vermeij3,4 | Akos Gyenis5 | Katharina Vogel5 | Jan H. J. Hoeijmakers3,4,5 | Christopher D. Wiley1 | Albert R. Davalos1 | Paul Hasty6 | Pierre-Yves Desprez1 | Judith Campisi1,7 1Buck Institute for Research on Aging, Novato, CA, USA Abstract 2Centre for Health Protection Research, ERCC1 (excision repair cross complementing-group 1) is a mammalian endonuclease National Institute of Public Health and that incises the damaged strand of DNA during nucleotide excision repair and inter- the Environment (RIVM), Bilthoven, The −/Δ Netherlands strand cross-link repair. Ercc1 mice, carrying one null and one hypomorphic Ercc1 3Department of Molecular Genetics, allele, have been widely used to study aging due to accelerated aging phenotypes Erasmus University Medical Center, −/Δ Rotterdam, The Netherlands in numerous organs and their shortened lifespan. Ercc1 mice display combined 4Princess Máxima Center for Pediatric features of human progeroid and cancer-prone syndromes.
    [Show full text]
  • Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases
    cells Review Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases Paulina Prorok 1 , Inga R. Grin 2,3, Bakhyt T. Matkarimov 4, Alexander A. Ishchenko 5 , Jacques Laval 5, Dmitry O. Zharkov 2,3,* and Murat Saparbaev 5,* 1 Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; [email protected] 2 SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; [email protected] 3 Center for Advanced Biomedical Research, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia 4 National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; [email protected] 5 Groupe «Mechanisms of DNA Repair and Carcinogenesis», Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif, France; [email protected] (A.A.I.); [email protected] (J.L.) * Correspondence: [email protected] (D.O.Z.); [email protected] (M.S.); Tel.: +7-(383)-3635187 (D.O.Z.); +33-(1)-42115404 (M.S.) Abstract: It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the Citation: Prorok, P.; Grin, I.R.; major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field Matkarimov, B.T.; Ishchenko, A.A.; and alkylating metabolic radicals added to these threats.
    [Show full text]
  • Paul Modrich Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
    Mechanisms in E. coli and Human Mismatch Repair Nobel Lecture, December 8, 2015 by Paul Modrich Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA. he idea that mismatched base pairs occur in cells and that such lesions trig- T ger their own repair was suggested 50 years ago by Robin Holliday in the context of genetic recombination [1]. Breakage and rejoining of DNA helices was known to occur during this process [2], with precision of rejoining attributed to formation of a heteroduplex joint, a region of helix where the two strands are derived from the diferent recombining partners. Holliday pointed out that if this heteroduplex region should span a genetic diference between the two DNAs, then it will contain one or more mismatched base pairs. He invoked processing of such mismatches to explain the recombination-associated phenomenon of gene conversion [1], noting that “If there are enzymes which can repair points of damage in DNA, it would seem possible that the same enzymes could recognize the abnormality of base pairing, and by exchange reactions rectify this.” Direct evidence that mismatches provoke a repair reaction was provided by bacterial transformation experiments [3–5], and our interest in this efect was prompted by the Escherichia coli (E. coli) work done in Matt Meselson’s lab at Harvard. Using artifcially constructed heteroduplex DNAs containing multiple mismatched base pairs, Wagner and Meselson [6] demonstrated that mismatches elicit a repair reaction upon introduction into the E. coli cell. Tey also showed that closely spaced mismatches, mismatches separated by a 1000 base pairs or so, are usually repaired on the same DNA strand.
    [Show full text]
  • In Silico Characterization of a Novel Pathogenic Deletion Mutation
    Nasir et al. Journal of Biomedical Science 2013, 20:70 http://www.jbiomedsci.com/content/20/1/70 RESEARCH Open Access In silico characterization of a novel pathogenic deletion mutation identified in XPA gene in a Pakistani family with severe xeroderma pigmentosum Muhammad Nasir1, Nafees Ahmad1, Christian MK Sieber2, Amir Latif3, Salman Akbar Malik4 and Abdul Hameed1* Abstract Background: Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation. Results: The XP complementation group was assigned by genotyping of family for known XP loci. Genotyping data mapped the family to complementation group A locus, involving XPA gene. Mutation analysis of the candidate XP gene by DNA sequencing revealed a novel deletion mutation (c.654del A) in exon 5 of XPA gene. The c.654del A, causes frameshift, which pre-maturely terminates protein and result into a truncated product of 222 amino acid (aa) residues instead of 273 (p.Lys218AsnfsX5). In silico tools were applied to study the likelihood of changes in structural motifs and thus interaction of mutated protein with binding partners. In silico analysis of mutant protein sequence, predicted to affect the aa residue which attains coiled coil structure. The coiled coil structure has an important role in key cellular interactions, especially with DNA damage-binding protein 2 (DDB2), which has important role in DDB-mediated nucleotide excision repair (NER) system.
    [Show full text]
  • BASC, a Super Complex of BRCA1-Associated Proteins Involved in the Recognition and Repair of Aberrant DNA Structures
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures Yi Wang,1,2,6 David Cortez,1,3,6 Parvin Yazdi,1,2 Norma Neff,5 Stephen J. Elledge,1,3,4 and Jun Qin1,2,7 1Verna and Mars McLean Department of Biochemistry and Molecular Biology, 2Department of Cellular and Molecular Biology, 3Howard Hughes Medical Institute, and 4Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 USA; 5Laboratory of Molecular Genetics, New York Blood Center, New York, New York 10021 USA We report the identities of the members of a group of proteins that associate with BRCA1 to form a large complex that we have named BASC (BRCA1-associated genome surveillance complex). This complex includes tumor suppressors and DNA damage repair proteins MSH2, MSH6, MLH1, ATM, BLM, and the RAD50–MRE11–NBS1 protein complex. In addition, DNA replication factor C (RFC), a protein complex that facilitates the loading of PCNA onto DNA, is also part of BASC. We find that BRCA1, the BLM helicase, and the RAD50–MRE11–NBS1 complex colocalize to large nuclear foci that contain PCNA when cells are treated with agents that interfere with DNA synthesis. The association of BRCA1 with MSH2 and MSH6, which are required for transcription-coupled repair, provides a possible explanation for the role of BRCA1 in this pathway. Strikingly, all members of this complex have roles in recognition of abnormal DNA structures or damaged DNA, suggesting that BASC may serve as a sensor for DNA damage.
    [Show full text]
  • Mechanism and Regulation of DNA Damage Recognition in Nucleotide Excision Repair
    Kusakabe et al. Genes and Environment (2019) 41:2 https://doi.org/10.1186/s41021-019-0119-6 REVIEW Open Access Mechanism and regulation of DNA damage recognition in nucleotide excision repair Masayuki Kusakabe1, Yuki Onishi1,2, Haruto Tada1,2, Fumika Kurihara1,2, Kanako Kusao1,3, Mari Furukawa1, Shigenori Iwai4, Masayuki Yokoi1,2,3, Wataru Sakai1,2,3 and Kaoru Sugasawa1,2,3* Abstract Nucleotide excision repair (NER) is a versatile DNA repair pathway, which can remove an extremely broad range of base lesions from the genome. In mammalian global genomic NER, the XPC protein complex initiates the repair reaction by recognizing sites of DNA damage, and this depends on detection of disrupted/destabilized base pairs within the DNA duplex. A model has been proposed that XPC first interacts with unpaired bases and then the XPD ATPase/helicase in concert with XPA verifies the presence of a relevant lesion by scanning a DNA strand in 5′-3′ direction. Such multi-step strategy for damage recognition would contribute to achieve both versatility and accuracy of the NER system at substantially high levels. In addition, recognition of ultraviolet light (UV)-induced DNA photolesions is facilitated by the UV-damaged DNA-binding protein complex (UV-DDB), which not only promotes recruitment of XPC to the damage sites, but also may contribute to remodeling of chromatin structures such that the DNA lesions gain access to XPC and the following repair proteins. Even in the absence of UV-DDB, however, certain types of histone modifications and/or chromatin remodeling could occur, which eventually enable XPC to find sites with DNA lesions.
    [Show full text]
  • (UV-DDB) Dimerization and Its Roles in Chromatinized DNA Repair
    Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair Joanne I. Yeha,b,1, Arthur S. Levinec,d, Shoucheng Dua, Unmesh Chintea, Harshad Ghodkee, Hong Wangd,e, Haibin Shia, Ching L. Hsiehc,d, James F. Conwaya, Bennett Van Houtend,e, and Vesna Rapić-Otrinc,d aDepartments of Structural Biology, bBioengineering, cMicrobiology and Molecular Genetics, ePharmacology and Chemical Biology, and dUniversity of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 AUTHOR SUMMARY Exposure to UV radiation (DDB1-CUL4A DDB2) with can damage DNA that if chromatin modification and left unrepaired can cause the subsequent steps in the mutations leading to skin repair pathway. aging and skin cancer. In Here we report the crystal humans, the nucleotide structure of the full-length excision repair (NER) * human DDB2 bound to proteins function to damaged DNA in a complex recognize and repair with human DDB1 (Fig. P1). UV-damaged DNA. Defects While a large portion of the in DNA repair caused by N-terminal region of the mutations of these repair zebrafish DDB2 in the proteins have been linked earlier structure could not to several genetic diseases, be modeled, we have characterized by cancer resolved the 3D structure of predisposition (xeroderma the N-terminal domain of pigmentosum, XP) or DDB2. Our structure reveals premature aging (Cockayne secondary interactions syndrome), illustrating the between the N-terminal Fig. P1. Composite model of a dimeric DDB1-CUL4ADDB2 ubiquitin functional significance of DDB2 domain of DDB2 and a ligase-nucleosome complex. A model of a dimeric DDB1-CUL4A in a neighboring repair proteins to genomic complex with a nucleosome core particle, generated according to the relative integrity.
    [Show full text]
  • Role of Apurinic/Apyrimidinic Nucleases in the Regulation of Homologous Recombination in Myeloma: Mechanisms and Translational S
    Kumar et al. Blood Cancer Journal (2018) 8:92 DOI 10.1038/s41408-018-0129-9 Blood Cancer Journal ARTICLE Open Access Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance Subodh Kumar1,2, Srikanth Talluri1,2, Jagannath Pal1,2,3,XiaoliYuan1,2, Renquan Lu1,2,PuruNanjappa1,2, Mehmet K. Samur1,4,NikhilC.Munshi1,2,4 and Masood A. Shammas1,2 Abstract We have previously reported that homologous recombination (HR) is dysregulated in multiple myeloma (MM) and contributes to genomic instability and development of drug resistance. We now demonstrate that base excision repair (BER) associated apurinic/apyrimidinic (AP) nucleases (APEX1 and APEX2) contribute to regulation of HR in MM cells. Transgenic as well as chemical inhibition of APEX1 and/or APEX2 inhibits HR activity in MM cells, whereas the overexpression of either nuclease in normal human cells, increases HR activity. Regulation of HR by AP nucleases could be attributed, at least in part, to their ability to regulate recombinase (RAD51) expression. We also show that both nucleases interact with major HR regulators and that APEX1 is involved in P73-mediated regulation of RAD51 expression in MM cells. Consistent with the role in HR, we also show that AP-knockdown or treatment with inhibitor of AP nuclease activity increases sensitivity of MM cells to melphalan and PARP inhibitor. Importantly, although inhibition 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; of AP nuclease activity increases cytotoxicity, it reduces genomic instability caused by melphalan. In summary, we show that APEX1 and APEX2, major BER proteins, also contribute to regulation of HR in MM.
    [Show full text]
  • Ku80 Antibody A
    Revision 1 C 0 2 - t Ku80 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 3 5 Web: [email protected] 7 www.cellsignal.com 2 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB, IP, IHC-P, IF-IC, F H Mk Endogenous 86 Rabbit P13010 7520 Product Usage Information cell cycle regulation, DNA replication and repair, telomere maintenance, recombination, and transcriptional activation. Application Dilution 1. Tuteja, R. and Tuteja, N. (2000) Crit. Rev. Biochem. Mol. Biol. 35, 1-33. 2. Blier, P.R. et al. (1993) J. Biol. Chem. 268, 7594-7601. Western Blotting 1:1000 3. Jin, S. and Weaver, D.T. (1997) EMBO J. 16, 6874-6885. Immunoprecipitation 1:25 4. Boulton, S.J. and Jackson, S.P. (1998) EMBO J. 17, 1819-1828. 5. Gravel, S. et al. (1998) Science 280, 741-744. Immunohistochemistry (Paraffin) 1:150 - 1:600 6. Cao, Q.P. et al. (1994) Biochemistry 33, 8548-8557. Immunofluorescence (Immunocytochemistry) 1:100 - 1:400 7. Lees-Miller, S.P. et al. (1990) Mol. Cell Biol. 10, 6472-6481. Flow Cytometry 1:50 - 1:100 8. Collis, S.J. et al. (2005) Oncogene 24, 949-961. Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity Ku80 antibody detects endogenous levels of total Ku80 protein.
    [Show full text]
  • A Werner Syndrome Protein Homolog Affects C. Elegans Development
    Research article 2565 A Werner syndrome protein homolog affects C. elegans development, growth rate, life span and sensitivity to DNA damage by acting at a DNA damage checkpoint Se-Jin Lee, Jong-Sung Yook, Sung Min Han and Hyeon-Sook Koo* Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, Korea *Author for correspondence (e-mail: [email protected]) Accepted 18 February 2004 Development 131, 2565-2575 Published by The Company of Biologists 2004 doi:10.1242/dev.01136 Summary A Werner syndrome protein homolog in C. elegans (WRN- irrespective of γ-irradiation, and pre-meiotic germ cells had 1) was immunolocalized to the nuclei of germ cells, an abnormal checkpoint response to DNA replication embryonic cells, and many other cells of larval and adult blockage. These observations suggest that WRN-1 acts as worms. When wrn-1 expression was inhibited by RNA a checkpoint protein for DNA damage and replication interference (RNAi), a slight reduction in C. elegans life blockage. This idea is also supported by an accelerated S span was observed, with accompanying signs of premature phase in wrn-1(RNAi) embryonic cells. wrn-1(RNAi) aging, such as earlier accumulation of lipofuscin and phenotypes similar to those of Werner syndrome, such as tissue deterioration in the head. In addition, various premature aging and short stature, suggest wrn-1-deficient developmental defects, including small, dumpy, ruptured, C. elegans as a useful model organism for Werner transparent body, growth arrest and bag of worms, were syndrome. induced by RNAi. The frequency of these defects was accentuated by γ-irradiation, implying that they were derived from spontaneous or induced DNA damage.
    [Show full text]
  • Genome Instability and Rad50s: Subtle Yet Severe
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Genome instability and Rad50S: subtle yet severe Martijn de Jager1 and Roland Kanaar1,2,3 1Department of Cell Biology & Genetics, Erasmus MC, and 2Department of Radiation Oncology, Erasmus MC–Daniel, 3000 DR Rotterdam, The Netherlands In the early 1980s, a primary hurdle on the track to un- Rad50S/S mice derstanding the function of a protein was the isolation of To derive a viable mouse Rad50 allele, Bender et al. its gene. Over the last two decades, we have seen subse- (2002) took their clues from genetic analyses of the quent hurdles in the race to decipher protein function, RAD50 gene from the yeast Saccharomyces cerevisiae. including atomic structure resolution and the creation of RAD50-deficient S.cerevisiae cells are viable but display viable mouse mutants, being cleared at an ever-increas- mitotic and meiotic phenotypes. The cells are sensitive ing pace. The genome surveillance protein Rad50has to the DNA-damaging agent methyl methanesulfonate now leapt over these modern-day hurdles. In the last two (MMS) and are defective in the formation of viable years, rapid progress has been made in understanding spores. Alani et al. (1990) had isolated separation-of- structural aspects of Rad50 (Hopfner et al. 2000, 2001, function (rad50S) alleles of RAD50 that conferred no 2002; de Jager et al. 2001). In this issue of Genes & De- overt MMS sensitivity to the cells, but still blocked vi- velopment, John Petrini and colleagues report on the able spore formation. All of the nine different muta- phenotypes of mice carrying a hypomorphic Rad50 allele tions that resulted in the rad50S phenotype mapped named Rad50S (Bender et al.
    [Show full text]