Comparison of Microbial Community Structure in Kiwifruit Pollens

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Microbial Community Structure in Kiwifruit Pollens Plant Pathol. J. 34(2) : 143-149 (2018) https://doi.org/10.5423/PPJ.NT.12.2017.0281 The Plant Pathology Journal pISSN 1598-2254 eISSN 2093-9280 ©The Korean Society of Plant Pathology Note Open Access Comparison of Microbial Community Structure in Kiwifruit Pollens Min-Jung Kim1†, Chang-Wook Jeon2†, Gyongjun Cho2, Da-Ran Kim1, Yong-Bum Kwack3, and Youn-Sig Kwak1,2* 1Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea 2Dvision of Applied Life Science (BK21plus), Gyeongsang National University, Jinju 52828, Korea 3Namhae Sub-Station, NIHHS, RDA, Namhae 52430, Korea (Received on December 26, 2017; Revised on January 30, 2018; Accepted on January 31, 2018) Flowers of kiwifruit are morphologically hermaph- Plant-associated microbes are fundamental determinant of roditic and survivable binucleate pollen is produced plant health and productivity (Berendsen et al., 2012). Mi- by the male flowers. In this study, we investigated crobes living on surfaces of plant are called epiphytes and microbial diversity in kiwifruit pollens by analyzing living in inner tissues are endophytes. Habitat of plant-asso- amplicon sequences of 16S rRNA. Four pollen samples ciated microbes are mainly divided into phyllosphere which were collected: ‘NZ’ was imported from New Zealand, is the aerial surfaces of fresh plant on the ground and rhizo- ‘CN’ from China in year of 2014, respectively. ‘KR13’ sphere which is the attached soil of root surfaces (Johnston- and ‘KR14’ were collected in 2013’ and 2014’ in South Monje et al., 2016). These plant microbiome makes the Korea. Most of the identified bacterial phyla in the four host to enhance nutrient accumulation from the soil, toler- different pollens were Proteobacteria, Actinobacteria ate against abiotic stresses, produce phytohormones and and Firmicutes. However, the imported and the domes- protect from pathogens (Bulgarelli et al., 2013). Accord- tic pollen samples showed different aspects of micro- ingly, it is crucial to understand the plant microbiome that bial community structures. The domestic pollens had how they coexist and what they do ecosystem. In the labo- more diverse in diversity than the imported samples. ratory, microbes are separated on culture media and identi- Among top 20 OTUs, Pseudomonas spp. was the most fied with biochemical and morphological methods (Yang dominant specie. Interestingly, a bacterial pathogen of and Crowley, 2000). However, the total environmental kiwifruit canker, Pseudomonas syringae pv. actinidiae DNA sequence data suggested that less than 1% in a gram was detected in ‘NZ’ by the specific PCR. This study of soil microbes can be cultured. As the ‘Pyrosequencing’ provides insights microbial distribution and community or ‘Metagenomics’ emerges, it can explore microbial com- structure information in kiwifruit pollen. munity and diversity research without culturing microbes (Gilbert et al., 2010). Therefore, the microbial studies using Keywords : kiwifruit, microbial community, pollen the culture-independent methods have recently provided much more ecological information of phyllosphere mi- Handling Associate Editor : Oh, Chang-Sik crobiology than previously studied (Lopez-Velasco et al., 2013). The plant rhizosphere contains the vast microbial diversity that colonize on the roots. One gram of soils con- tains about 2 × 109 CFU (Daniel, 2005). The majority of †These authors contributed equally to this work as first authors. bacteria in the rhizosphere habitats belonged to Proteobac- *Corresponding author. teria, Acidobacteria, Actinobacteria and Bacteroidetes. Mi- Phone) +82-55-772-1922, FAX) +82-55-772-1929 crobial community composition differs depending on the E-mail) [email protected] This is an Open Access article distributed under the terms of the plant species, the soil type and the cultural practices. Plant Creative Commons Attribution Non-Commercial License (http:// organic matter such as root exudates, epidermal cells and creativecommons.org/licenses/by-nc/4.0) which permits unrestricted mucilage also influence the microbial community in rhizo- noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. sphere (Coats et al., 2014). Compared with bulk soil, the microbial biomass and activity in rhizosphere are enhanced Articles can be freely viewed online at www.ppjonline.org. as a result of compounds exudation by the root (Sørensen, 144 Kim et al. 1997). Likewise, such studies focused on rhizosphere have were transferred to 1.5 ml tube, centrifuged at 13,000 rpm been widely reported. However, phyllosphere microbiome for 1 min then the supernatant was discarded. The process has been less studied then rhizosphere one (Vorholt, 2012). was repeated 3 times. Total DNA were extracted using Bacteria have often distributed in numbers averaging 106 DNA prep kit (Solgent Co., Daejeon, Korea) divided into to 107 cfu/cm2 on leaves. Proteobacteria containing α-, β- gram-negative and gram-positive. In the case of gram- and γ-proteobacteria are known as the dominant bacterial positive bacteria, the pellets were resuspended in 300 μl group of the phyllosphere with Firmicutes, Acidobacteria, of R1 solution, added 2 μl of Lysozyme (100 mg/ml). The Actinobacteria and Cyanobacteria (Whipps et al., 2008). tubes were incubated at 37oC for 1 h, centrifuged at 10,000 Most studies about phyllosphere microbial community has rpm for 1 min and the supernatant was discarded. From focused on leaves but pollen-associated microbes are poor- here, experimental procedures were performed as same ly investigated. Pollen-associated microbial communities both gram-positive and gram-negative bacteria. SGD1 are different by pollination types such as insect-pollinated solution (350 μl) and 5 μl of protenase K (20 mg/ml) were plants and wind-pollinated ones or species-specific in same added, mixed using vortex for 1 min and incubated at 65oC environmental conditions (Ambika Manirajan et al., 2016). for 10 min. After cooling the mixtures thoroughly at room Actinidia spp. (Kiwifruit) is an economically important temperature for 5 min, 400 μl of SGD2 solution was added, crop widely cultivated in many countries. It is dioecious mixed then centrifuged at 10,000 rpm for 5 min. During fruit tree divided into opposite sex: male and female centrifuged, spin column was installed to 2-ml collection flower. These flowers are morphologically hermaphroditic, tube. SuperBinderTM Solution (100 μl) was added to the however, survivable binucleate pollen is produced by the spin column, centrifuged at 10,000 rpm for 30 sec and the male flowers only (Fraser et al., 2009). The kiwifruit bacte- pass-through was discarded. Spin column was transferred rial canker caused by Pseudomonas syringae pv. actinidiae to a new 2-ml collection tube. WB (500 μl, 80% Ethanol) (PSA) is the severe problem in the global kiwifruit indus- was added to spin column and centrifuged at 10,000 rpm try (Kim et al., 2017). The symptoms of bacterial canker for 30 sec. The pass-through was discarded, in the same appear brown spots surrounded by a yellow halo on the way, DNA was washed with 500 μl of WB (80% Ethanol) leaves, milky bacterial exudates from the many organs once again. The empty spin column was centrifuged at (twigs, vines, leaves and flower) and typical canker on the 10,000 rpm for 2 min to eliminate the WB completely and trunks (Kim et al., 2017). Pollen contaminated by the PSA transferred to a new 1.5 ml tube. DNA Hydration Solution is a serious vector to spread the canker pathogen (Chapman (50 μl) was added, incubated at room temperature for 1 min et al., 2011). Overwintering PSA can disperse to host via and centrifuged at 10,000 rpm for 2 min. Spin column was pollen in the disease cycle (Donati et al., 2014). Artificial eliminated and final DNA were stored in a new 1.5 ml tube pollination with the PSA contamination pollen obviously at -80oC. spread and transfer the pathogen in orchard and transfer Bacterial 16S rRNA regions were amplified by forward the pathogen from infected orchard to non-infected orchard primer 27F (10 pmol): 5’-GAGTTTGATCMTGGCT- (Tontou et al., 2014). Therefore, understanding of the mi- CAG-3’ and the reverse primer 518R (10 pmol): 5’ WT- crobial community structures of the pollen is necessary to TACCGCGGCTGCTGG 3’ (Kwon et al., 2010). The implement the management strategies of kiwifruit bacterial volume of PCR products was adjusted to total volume 20 canker. μl with 13.8 μl of distilled water, 100 ng of template DNA, In this study, four kiwifruit pollen samples were collect- 2 μl of 10X reaction buffer, 1 μl of 10 mM dNTP, 1 μl of ed from several orchards in New Zealand, China and South respective primers and 5 unit of Taq DNA polymerase Korea. Two pollen samples, New Zealand and China were (Bioneer Co., Daejeon, Korea). Reactions were performed imported in year of 2014 and two domestic pollen samples using 5 min of denaturation step at 95oC, 30 cycles consist- were collected from a kiwifruit orchard in Sacheon, Ko- ing of 30 sec at 95oC, 30 sec at 55oC and 30 sec at 72oC, rea in year of 2013 and 2014, respectively. One gram of followed by 5 min of final extension at 72oC (Rondon et the pollen was added to a test-tube containing 9 ml of 1X al., 2000). PCR products containing the amplified DNA Phosphate buffered saline (PBS; 8 g NaCl, 0.2 g KCl, fragments were checked their size by electrophoresis on 1% 1.44 g Na2HPO4, 0.24 g KH2PO4, bring total volume to 1l agarose gel containing ethidium bromide in 1% Tris-ace- with ddH2O, pH 7.4). To lyse the cellular organelles and tate EDTA (TAE) buffer. The PCR products were purified extract DNA, the samples were sonicated with frequencies using the ExpinTM gel SV kit (Geneall biotech Co., Seoul, of 35 kHz for ten minutes using ultrasonic bath (Bandelin Korea). Pyrosequencing was performed using the Roche electronic GmbH and Co., Berlin, Germany).
Recommended publications
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Diverse Environmental Pseudomonas Encode Unique Secondary Metabolites That Inhibit Human Pathogens
    DIVERSE ENVIRONMENTAL PSEUDOMONAS ENCODE UNIQUE SECONDARY METABOLITES THAT INHIBIT HUMAN PATHOGENS Elizabeth Davis A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2017 Committee: Hans Wildschutte, Advisor Ray Larsen Jill Zeilstra-Ryalls © 2017 Elizabeth Davis All Rights Reserved iii ABSTRACT Hans Wildschutte, Advisor Antibiotic resistance has become a crisis of global proportions. People all over the world are dying from multidrug resistant infections, and it is predicted that bacterial infections will once again become the leading cause of death. One human opportunistic pathogen of great concern is Pseudomonas aeruginosa. P. aeruginosa is the most abundant pathogen in cystic fibrosis (CF) patients’ lungs over time and is resistant to most currently used antibiotics. Chronic infection of the CF lung is the main cause of morbidity and mortality in CF patients. With the rise of multidrug resistant bacteria and lack of novel antibiotics, treatment for CF patients will become more problematic. Escalating the problem is a lack of research from pharmaceutical companies due to low profitability, resulting in a large void in the discovery and development of antibiotics. Thus, research labs within academia have played an important role in the discovery of novel compounds. Environmental bacteria are known to naturally produce secondary metabolites, some of which outcompete surrounding bacteria for resources. We hypothesized that environmental Pseudomonas from diverse soil and water habitats produce secondary metabolites capable of inhibiting the growth of CF derived P. aeruginosa. To address this hypothesis, we used a population based study in tandem with transposon mutagenesis and bioinformatics to identify eight biosynthetic gene clusters (BGCs) from four different environmental Pseudomonas strains, S4G9, LE6C9, LE5C2 and S3E10.
    [Show full text]
  • Aquatic Microbial Ecology 80:15
    The following supplement accompanies the article Isolates as models to study bacterial ecophysiology and biogeochemistry Åke Hagström*, Farooq Azam, Carlo Berg, Ulla Li Zweifel *Corresponding author: [email protected] Aquatic Microbial Ecology 80: 15–27 (2017) Supplementary Materials & Methods The bacteria characterized in this study were collected from sites at three different sea areas; the Northern Baltic Sea (63°30’N, 19°48’E), Northwest Mediterranean Sea (43°41'N, 7°19'E) and Southern California Bight (32°53'N, 117°15'W). Seawater was spread onto Zobell agar plates or marine agar plates (DIFCO) and incubated at in situ temperature. Colonies were picked and plate- purified before being frozen in liquid medium with 20% glycerol. The collection represents aerobic heterotrophic bacteria from pelagic waters. Bacteria were grown in media according to their physiological needs of salinity. Isolates from the Baltic Sea were grown on Zobell media (ZoBELL, 1941) (800 ml filtered seawater from the Baltic, 200 ml Milli-Q water, 5g Bacto-peptone, 1g Bacto-yeast extract). Isolates from the Mediterranean Sea and the Southern California Bight were grown on marine agar or marine broth (DIFCO laboratories). The optimal temperature for growth was determined by growing each isolate in 4ml of appropriate media at 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50o C with gentle shaking. Growth was measured by an increase in absorbance at 550nm. Statistical analyses The influence of temperature, geographical origin and taxonomic affiliation on growth rates was assessed by a two-way analysis of variance (ANOVA) in R (http://www.r-project.org/) and the “car” package.
    [Show full text]
  • Control of Phytopathogenic Microorganisms with Pseudomonas Sp. and Substances and Compositions Derived Therefrom
    (19) TZZ Z_Z_T (11) EP 2 820 140 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 63/02 (2006.01) A01N 37/06 (2006.01) 10.01.2018 Bulletin 2018/02 A01N 37/36 (2006.01) A01N 43/08 (2006.01) C12P 1/04 (2006.01) (21) Application number: 13754767.5 (86) International application number: (22) Date of filing: 27.02.2013 PCT/US2013/028112 (87) International publication number: WO 2013/130680 (06.09.2013 Gazette 2013/36) (54) CONTROL OF PHYTOPATHOGENIC MICROORGANISMS WITH PSEUDOMONAS SP. AND SUBSTANCES AND COMPOSITIONS DERIVED THEREFROM BEKÄMPFUNG VON PHYTOPATHOGENEN MIKROORGANISMEN MIT PSEUDOMONAS SP. SOWIE DARAUS HERGESTELLTE SUBSTANZEN UND ZUSAMMENSETZUNGEN RÉGULATION DE MICRO-ORGANISMES PHYTOPATHOGÈNES PAR PSEUDOMONAS SP. ET DES SUBSTANCES ET DES COMPOSITIONS OBTENUES À PARTIR DE CELLE-CI (84) Designated Contracting States: • O. COUILLEROT ET AL: "Pseudomonas AL AT BE BG CH CY CZ DE DK EE ES FI FR GB fluorescens and closely-related fluorescent GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO pseudomonads as biocontrol agents of PL PT RO RS SE SI SK SM TR soil-borne phytopathogens", LETTERS IN APPLIED MICROBIOLOGY, vol. 48, no. 5, 1 May (30) Priority: 28.02.2012 US 201261604507 P 2009 (2009-05-01), pages 505-512, XP55202836, 30.07.2012 US 201261670624 P ISSN: 0266-8254, DOI: 10.1111/j.1472-765X.2009.02566.x (43) Date of publication of application: • GUANPENG GAO ET AL: "Effect of Biocontrol 07.01.2015 Bulletin 2015/02 Agent Pseudomonas fluorescens 2P24 on Soil Fungal Community in Cucumber Rhizosphere (73) Proprietor: Marrone Bio Innovations, Inc.
    [Show full text]
  • Pseudomonas Versuta Sp. Nov., Isolated from Antarctic Soil 1 Wah
    *Manuscript 1 Pseudomonas versuta sp. nov., isolated from Antarctic soil 1 2 3 1,2 3 1 2,4 1,5 4 2 Wah Seng See-Too , Sergio Salazar , Robson Ee , Peter Convey , Kok-Gan Chan , 5 6 3 Álvaro Peix 3,6* 7 8 4 1Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of 9 10 11 5 Science University of Malaya, 50603 Kuala Lumpur, Malaysia 12 13 6 2National Antarctic Research Centre (NARC), Institute of Postgraduate Studies, University of 14 15 16 7 Malaya, 50603 Kuala Lumpur, Malaysia 17 18 8 3Instituto de Recursos Naturales y Agrobiología. IRNASA -CSIC, Salamanca, Spain 19 20 4 21 9 British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK 22 23 10 5UM Omics Centre, University of Malaya, Kuala Lumpur, Malaysia 24 25 11 6Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca- 26 27 28 12 IRNASA ( CSIC) 29 30 13 , IRNASA-CSIC, 31 32 33 14 c/Cordel de Merinas 40 -52, 37008 Salamanca, Spain. Tel.: +34 923219606. 34 35 15 E-mail address: [email protected] (A. Peix) 36 37 38 39 16 Abstract: 40 41 42 43 17 In this study w e used a polyphas ic taxonomy approach to analyse three bacterial strains 44 45 18 coded L10.10 T, A4R1.5 and A4R1.12 , isolated in the course of a study of quorum -quenching 46 47 19 bacteria occurring Antarctic soil . The 16S rRNA gene sequence was identical in the three 48 49 50 20 strains and showed 99.7% pairwise similarity with respect to the closest related species 51 52 21 Pseudomonas weihenstephanensis WS4993 T, and the next closest related species were P.
    [Show full text]
  • A Comparative Analysis of Ash Leaf-Colonizing Bacterial Communities Identifies Putative Antagonists of Hymenoscyphus Fraxineus
    ORIGINAL RESEARCH published: 29 May 2020 doi: 10.3389/fmicb.2020.00966 A Comparative Analysis of Ash Leaf-Colonizing Bacterial Communities Identifies Putative Antagonists of Hymenoscyphus fraxineus Kristina Ulrich1, Regina Becker2, Undine Behrendt2, Michael Kube3 and Andreas Ulrich2* 1 Institute of Forest Genetics, Johann Heinrich von Thünen Institute, Waldsieversdorf, Germany, 2 Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany, 3 Integrative Infection Biology Crops-Livestock, University of Hohenheim, Stuttgart, Germany In the last few years, the alarming spread of Hymenoscyphus fraxineus, the causal agent of ash dieback, has resulted in a substantial threat to native ash stands in central and northern Europe. Since leaves and leaf petioles are the primary infection sites, phyllosphere microorganisms are presumed to interact with the pathogen and Edited by: are discussed as a source of biocontrol agents. We studied compound leaves from Daguang Cai, susceptible and visible infection-free trees in four ash stands with a high likelihood of University of Kiel, Germany infection to assess a possible variation in the bacterial microbiota, depending on the Reviewed by: Luciano Kayser Vargas, health status of the trees. The bacterial community was analyzed by culture-independent Secretaria Estadual da Agricultura, 16S rRNA gene amplicon sequencing and through the isolation and taxonomic Pecuária e Irrigação, Brazil Carolina Chiellini, classification of
    [Show full text]
  • Devendra K. Choudhary · Manoj Kumar Ram Prasad · Vivek Kumar
    Devendra K. Choudhary · Manoj Kumar Ram Prasad · Vivek Kumar Editors In Silico Approach for Sustainable Agriculture In Silico Approach for Sustainable Agriculture Devendra K. Choudhary • Manoj Kumar Ram Prasad • Vivek Kumar Editors In Silico Approach for Sustainable Agriculture Editors Devendra K. Choudhary Manoj Kumar Department of Microbiology, Faculty Centre for Life Sciences of Life Sciences Central University of Jharkhand PDM University Ranchi, Jharkhand, India Bahadurgarh, Haryana, India Vivek Kumar Ram Prasad Amity Institute of Microbial Technology Amity Institute of Microbial Technology Amity University Amity University Noida, Uttar Pradesh, India Noida, Uttar Pradesh, India ISBN 978-981-13-0346-3 ISBN 978-981-13-0347-0 (eBook) https://doi.org/10.1007/978-981-13-0347-0 Library of Congress Control Number: 2018944672 © Springer Nature Singapore Pte Ltd. 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • Appendix 1. New and Emended Taxa Described Since Publication of Volume One, Second Edition of the Systematics
    188 THE REVISED ROAD MAP TO THE MANUAL Appendix 1. New and emended taxa described since publication of Volume One, Second Edition of the Systematics Acrocarpospora corrugata (Williams and Sharples 1976) Tamura et Basonyms and synonyms1 al. 2000a, 1170VP Bacillus thermodenitrificans (ex Klaushofer and Hollaus 1970) Man- Actinocorallia aurantiaca (Lavrova and Preobrazhenskaya 1975) achini et al. 2000, 1336VP Zhang et al. 2001, 381VP Blastomonas ursincola (Yurkov et al. 1997) Hiraishi et al. 2000a, VP 1117VP Actinocorallia glomerata (Itoh et al. 1996) Zhang et al. 2001, 381 Actinocorallia libanotica (Meyer 1981) Zhang et al. 2001, 381VP Cellulophaga uliginosa (ZoBell and Upham 1944) Bowman 2000, VP 1867VP Actinocorallia longicatena (Itoh et al. 1996) Zhang et al. 2001, 381 Dehalospirillum Scholz-Muramatsu et al. 2002, 1915VP (Effective Actinomadura viridilutea (Agre and Guzeva 1975) Zhang et al. VP publication: Scholz-Muramatsu et al., 1995) 2001, 381 Dehalospirillum multivorans Scholz-Muramatsu et al. 2002, 1915VP Agreia pratensis (Behrendt et al. 2002) Schumann et al. 2003, VP (Effective publication: Scholz-Muramatsu et al., 1995) 2043 Desulfotomaculum auripigmentum Newman et al. 2000, 1415VP (Ef- Alcanivorax jadensis (Bruns and Berthe-Corti 1999) Ferna´ndez- VP fective publication: Newman et al., 1997) Martı´nez et al. 2003, 337 Enterococcus porcinusVP Teixeira et al. 2001 pro synon. Enterococcus Alistipes putredinis (Weinberg et al. 1937) Rautio et al. 2003b, VP villorum Vancanneyt et al. 2001b, 1742VP De Graef et al., 2003 1701 (Effective publication: Rautio et al., 2003a) Hongia koreensis Lee et al. 2000d, 197VP Anaerococcus hydrogenalis (Ezaki et al. 1990) Ezaki et al. 2001, VP Mycobacterium bovis subsp. caprae (Aranaz et al.
    [Show full text]
  • Molecular Characterisation of the Causal Agent of Bacterial Leaf Streak of Maize
    Molecular characterisation of the causal agent of bacterial leaf streak of maize NJJ Niemann 21114900 Dissertation submitted in fulfilment of the requirements for the degree Magister Scientiae in Environmental Sciences at the Potchefstroom Campus of the North-West University Supervisor: Prof CC Bezuidenhout Co-supervisor: Prof BC Flett May 2015 Declaration I declare that this dissertation submitted for the degree of Master of Science in Environmental Sciences at the North-West University, Potchefstroom Campus, has not been previously submitted by me for a degree at this or any other university, that it is my own work in design and execution, and that all material contained herein has been duly acknowledged. __________________________ __________________ NJJ Niemann Date ii Acknowledgements Thank you God for giving me the strength and will to complete this dissertation. I would like to thank the following people: My father, mother and brother for all their contributions and encouragement. My family and friends for their constant words of motivation. My supervisors for their support and providing me with the platform to work independently. Stefan Barnard for his input and patience with the construction of maps. Dr Gupta for his technical assistance. Thanks to the following organisations: The Maize Trust, the ARC and the NRF for their financial support of this research. iii Abstract All members of the genus Xanthomonas are considered to be plant pathogenic, with specific pathovars infecting several high value agricultural crops. One of these pathovars, X. campestris pv. zeae (as this is only a proposed name it will further on be referred to as Xanthomonas BLSD) the causal agent of bacterial leaf steak of maize, has established itself as a widespread significant maize pathogen within South Africa.
    [Show full text]
  • Pseudomonas Versuta Sp. Nov., Isolated from Antarctic Soil
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NERC Open Research Archive Accepted Manuscript Title: Pseudomonas versuta sp. nov., isolated from Antarctic soil Authors: Wah Seng See-Too, Sergio Salazar, Robson Ee, Peter Convey, Kok-Gan Chan, Alvaro´ Peix PII: S0723-2020(17)30039-5 DOI: http://dx.doi.org/doi:10.1016/j.syapm.2017.03.002 Reference: SYAPM 25827 To appear in: Received date: 12-1-2017 Revised date: 20-3-2017 Accepted date: 24-3-2017 Please cite this article as: Wah Seng See-Too, Sergio Salazar, Robson Ee, Peter Convey, Kok-Gan Chan, Alvaro´ Peix, Pseudomonas versuta sp.nov., isolated from Antarctic soil, Systematic and Applied Microbiologyhttp://dx.doi.org/10.1016/j.syapm.2017.03.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Pseudomonas versuta sp. nov., isolated from Antarctic soil Wah Seng See-Too1,2, Sergio Salazar3, Robson Ee1, Peter Convey 2,4, Kok-Gan Chan1,5, Álvaro Peix3,6* 1Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia 2National Antarctic Research Centre (NARC), Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia 3Instituto de Recursos Naturales y Agrobiología.
    [Show full text]
  • Bacterial Community Structures in the Solfataric-Acidic Ponds in the Kirishima Geothermal Area, Kagoshima Prefecture
    温泉科学(J. Hot Spring Sci.),63,100-117(2013) 原 著 Bacterial Community Structures in the Solfataric-Acidic Ponds in the Kirishima Geothermal Area, Kagoshima Prefecture 1) 1) 1) Tomoko Satoh , Keiko Watanabe , Hideo Yamamoto , 1) 1) Shuichi Yamamoto and Norio Kurosawa * (Received Mar. 25, 2013, Accepted Jun. 13, 2013) 鹿児島県霧島地域の酸性硫黄源泉 における細菌群集構造の解析 佐藤智子1),渡邉啓子1),山本英夫1),山本修一1),黒沢則夫1)* 要 旨 温度や化学成分が異なる温泉間で細菌群集構造を比較するため,鹿児島県霧島地域に分布す る 4 つの酸性硫黄泉における細菌群集構造を,16S rRNA 遺伝子クローン解析法を用いて解析し た.選択した温泉の温度および総化学成分量は次の通りである.1)Pond-A:93oC,1,679 mg L-1, 2)Pond-B:66oC,2,248 mg L-1,3)Pond-C:88oC,198 mg L-1,4)Pond-D:67oC,340 mg L-1. 相同性検索による種の同定を行った結果,4 つの温泉由来の計 372 クローンは 35 系統群に分類 され,何れの温泉においても γ-Proteobacteria 綱が優占していた.最も多様性が高かったのは, 温度と総化学成分量が共に相対的に低い Pond-D であり,この温泉では Acinetobacter junii に 近縁な種が全クローンの 37% を占めていた.Pond-D と同程度の温度ながら総化学成分量が相 対的に高い Pond-B では,Acidithiobacillus caldus の近縁種および δ-Proteobacteria 綱に属す る未培養細菌が優占していた.一方,温度が相対的に高い Pond-A と C では Acinetobacter johnsonii に近縁な種が全クローンの 57% 以上を占めていた.本研究により,霧島地域の温度 や化学成分が異なる酸性硫黄泉間における,細菌の群集構造および多様性の具体的な違いが明 らかとなった. キーワード:霧島温泉群,細菌,群集構造,多様性,化学成分,16S rRNA 遺伝子 Abstract The bacterial 16S rRNA gene composition and environmental characteristics of four distinct solfataric-acidic ponds in the Kirishima geothermal area, Kagoshima Prefecture, 1)Division of Environmental Engineering for Symbiosis, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan. 1)創価大学大学院工学研究科環境共生 工学専攻 〒192-8577 東京都八王子市丹木町1-236.*Corresponding author:E-mail kurosawa@ soka.ac.jp, TEL +81-42-691-8175, FAX +81-42-691-8175. 100 第 63 巻(2013) 鹿児島県霧島地域の酸性硫黄源泉における細菌群集構造の解析 Japan, were compared. The four ponds were selected based on differences in temperature and the total concentration of examined chemical components : 1) Pond-A : 93℃ and 1679 mg L-1 ; 2) Pond-B : 66℃ and 2248 mg L-1 ; 3) Pond-C : 88℃ and 198 mg L-1 ; and 4) Pond-D : 67℃ and 340 mg L-1.
    [Show full text]
  • Analysis of Draft Genome Sequence of Pseudomonas Sp. QTF5 Reveals Its Benzoic Acid Degradation Ability and Heavy Metal Tolerance
    Hindawi BioMed Research International Volume 2017, Article ID 4565960, 7 pages https://doi.org/10.1155/2017/4565960 Research Article Analysis of Draft Genome Sequence of Pseudomonas sp. QTF5 Reveals Its Benzoic Acid Degradation Ability and Heavy Metal Tolerance Yang Li,1 Yi Ren,2 and Nan Jiang3 1 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China 2Shanghai Majorbio Bio-Pharm Biotechnology Co., Ltd, Shanghai, China 3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China Correspondence should be addressed to Nan Jiang; [email protected] Received 16 June 2017; Revised 4 October 2017; Accepted 1 November 2017; Published 15 November 2017 Academic Editor: Carla Renata Arciola Copyright © 2017 Yang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pseudomonas sp.QTF5wasisolatedfromthecontinuouspermafrostnearthebitumenlayersintheQiangtangbasinofQinghai- Tibetan Plateau in China (5,111 m above sea level). It is psychrotolerant and highly and widely tolerant to heavy metals and has the ability to metabolize benzoic acid and salicylic acid. To gain insight into the genetic basis for its adaptation, we performed whole genome sequencing and analyzed the resistant genes and metabolic pathways. Based on 120 published and annotated genomes representing 31 species in the genus Pseudomonas, in silico genomic DNA-DNA hybridization (<54%) and average nucleotide identity calculation (<94%) revealed that QTF5 is closest to Pseudomonas lini andshouldbeclassifiedintoanovelspecies.This study provides the genetic basis to identify the genes linked to its specific mechanisms for adaptation to extreme environment and application of this microorganism in environmental conservation.
    [Show full text]