Pseudomonas Versuta Sp. Nov., Isolated from Antarctic Soil 1 Wah

Total Page:16

File Type:pdf, Size:1020Kb

Pseudomonas Versuta Sp. Nov., Isolated from Antarctic Soil 1 Wah *Manuscript 1 Pseudomonas versuta sp. nov., isolated from Antarctic soil 1 2 3 1,2 3 1 2,4 1,5 4 2 Wah Seng See-Too , Sergio Salazar , Robson Ee , Peter Convey , Kok-Gan Chan , 5 6 3 Álvaro Peix 3,6* 7 8 4 1Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of 9 10 11 5 Science University of Malaya, 50603 Kuala Lumpur, Malaysia 12 13 6 2National Antarctic Research Centre (NARC), Institute of Postgraduate Studies, University of 14 15 16 7 Malaya, 50603 Kuala Lumpur, Malaysia 17 18 8 3Instituto de Recursos Naturales y Agrobiología. IRNASA -CSIC, Salamanca, Spain 19 20 4 21 9 British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK 22 23 10 5UM Omics Centre, University of Malaya, Kuala Lumpur, Malaysia 24 25 11 6Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca- 26 27 28 12 IRNASA ( CSIC) 29 30 13 , IRNASA-CSIC, 31 32 33 14 c/Cordel de Merinas 40 -52, 37008 Salamanca, Spain. Tel.: +34 923219606. 34 35 15 E-mail address: [email protected] (A. Peix) 36 37 38 39 16 Abstract: 40 41 42 43 17 In this study w e used a polyphas ic taxonomy approach to analyse three bacterial strains 44 45 18 coded L10.10 T, A4R1.5 and A4R1.12 , isolated in the course of a study of quorum -quenching 46 47 19 bacteria occurring Antarctic soil . The 16S rRNA gene sequence was identical in the three 48 49 50 20 strains and showed 99.7% pairwise similarity with respect to the closest related species 51 52 21 Pseudomonas weihenstephanensis WS4993 T, and the next closest related species were P. 53 54 T T T 55 22 deceptionensis M1 (99.5%), P. psychrophila E-3 , P. endophytica BSTT44 and P. fragi 56 57 23 ATCC 4973 T (99. 2%) . Therefore, the three strains were classified within the genus 58 59 60 24 Pseudomonas . Analysis of housekeeping gene s (rpoB , rpoD and gyrB ) sequences showed 61 62 63 64 65 25 similarities of 84-95% with respect to the closest relatives, confirming its phylogenetic 1 2 26 affiliation. The whole genome average nucleotide identity ( ANI) values were more than 99% 3 4 5 27 similar among the three strains, and less than 86% to the closest related species type strains . 6 7 28 The respiratory quinone is Q9. The major fatty acids are C16:0, C16:1 ω7c/ C16:1 ω6c in 8 9 10 29 summed feature 3 and C18:1 ω7c / C18:1 ω6c in summed feature 8 . The strain s are oxidase - 11 12 30 and catalase -positive. The arginine dihydrolase and urease tests are positive . Growth occur s 13 14 15 31 at 4 –30 C with an optimum at 28 C, and at pH 4.0 –10 . The DNA G+C content is 58. 2-58.3 16 17 32 mol % . The combined genotypic, phenotypic and chemotaxonomic data support the 18 19 T 20 33 classification of strain s L10.10 , A4R1.5 and A4R1.12 into a novel species of Pseudomonas , 21 T T 22 34 for which the name P. versuta sp. nov. is proposed. The type strain is L10.10 (LMG 29628 , 23 24 35 DSM 101070 T). 25 26 27 36 28 29 37 Keywords: Pseudomonas, taxonomy , Antarctica, Antarctic soil, quorum quenching, quorum 30 31 32 38 sensing 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 39 The genus Pseudomonas was first described by Migula [29] and is one of the most commonly 1 2 40 reported bacteria in Antarctica [28]. To date, according to the List of Prokaryotic Names with 3 4 5 41 Standing in Nomenclature (http://www.bacterio.net/pseudomonas.html) , there are more than 6 7 42 150 species described in this genus. Pseudomonas is one of the most diverse and ubiquitous 8 9 10 43 bacterial genera, and representatives have been isolated worldwide including from many 11 12 44 extreme environments such as Antarctica [37], given their extraordinarily versatile 13 14 45 metabolism. Even though psychrophilic strains of P. aeruginosa, P. fluorescens, P. putida 15 16 17 46 and P. syringae were reported by Shivaji et al. [47] in Antarctic soil and water samples, 18 19 47 entirely novel species of Pseudomonas from Antarctica were first described by Reddy et al. 20 21 22 48 in 2004 with the isolation of P. antarctica, P. proteolytica and P. meridiana from 23 24 49 cyanobacterial mat samples [39] . Since then, six further novel species have been isolated 25 26 27 50 from Antarctic or sub-Antarctic regions, including P. guineae [5], P. pelagia [18], P. 28 29 51 extremaustralis [27], P. deceptionensis [6], P. prosekii [23], and the most recently described 30 31 32 52 P. yamanorum [4], isolated from the Isla de los Estados (Tierra del Fuego, Argentina). 33 34 35 53 The production of N- acyl-homoserine lactones (AHLs) mediating quorum sensing (QS) is a 36 37 38 54 common property identified in numerous Pseudomonas strains for the regulation of a variety 39 40 55 of phenotypes in relation to the population density [24, 53, 55]. Certain Pseudomonas species 41 42 43 56 were also found to possess AHL acylase activity, an enzyme that can degrade AHLs, 44 45 57 allowing the utilization of this compound as nitrogen and energy sources [17, 26, 49]. 46 47 58 Degradation of QS signaling is termed as quorum quenching (QQ), and has been suggested as 48 49 50 59 a highly promising alternative approach for infection control since QQ does not affect 51 52 60 bacterial viability and could minimize the selective pressure to develop resistance [14]. QQ 53 54 55 61 enzyme production has been widely described in mesophilic bacterial strains [12, 14]. In this 56 57 62 context, isolation of novel psychrotolerant QQ bacteria will help to unravel the potential of 58 59 60 61 62 63 64 65 63 QQ bacteria as biocontrol agents in cold environments at high latitudes or in temperate 1 2 64 regions. 3 4 5 6 65 During an ecological survey of QQ soil bacteria in various locations in Antarctica (Fig. 1), 7 8 66 we isolated three strains from soil samples using QQ bacteria enrichment medium [8]. The 9 10 11 67 soil samples were collected from Lagoon Island and Anchorage Island (Ryder Bay, Adelaide 12 13 68 Island) and taken to the laboratory for bacterial isolation. In brief, 1 g of soil sample and 5 ml 14 15 16 69 sterile QQ bacteria enrichment medium containing 100 µg synthetic C 6-HSL as sole carbon 17 18 70 source, were mixed in a sterile 50 ml plastic tube and incubated at 4 °C and 150 rpm. After 1 19 20 21 71 week of incubation, 100 µl of the bacterial suspension were added into new QQ bacteria 22 23 72 enrichment medium again including C 6-HSL. This step was repeated three times and finally, 24 25 73 100 µl of bacterial suspension were plated onto Luria-Bertani (LB) agar. The three strains 26 27 T 28 74 obtained, coded as L10.10 , A4R1.5 and A4R1.12, were subjected to a polyphasic taxonomic 29 30 75 study, and classified into the genus Pseudomonas within the Class Gammaproteobacteria 31 32 33 76 according to 16S rRNA and housekeeping gene analyses . The genomic, phylogenetic, 34 35 77 chemotaxonomic and phenotypic data obtained showed that they represent a novel species for 36 37 38 78 which the name Pseudomonas versuta sp. nov. is proposed. 39 40 41 79 In order to analyse genetic variability and to assess for clonality, the three strains were 42 43 44 80 j P PD f m M13 (5’ - GAGGGTGGCGGTTCT 45 46 81 –3’) v [41]. The bands present in each profile were coded for input into 47 48 49 82 a database including all the strains studied and Dice similarity coeffi cient was calculated to 50 51 83 construct the distance matrix. A dendrogram was constructed from the distance matrix using 52 53 54 84 the unweighted pair group with arithmetic mean (UPGMA) , using the GelCompar II program 55 56 85 from Bionumerics platform (Applied Maths NV). The RAPD patterns obtained showed that 57 58 86 the three strains L10.10 T, A4R1.5 and A4R1.12 are not clones since they present different 59 60 61 62 63 64 65 87 RAPD profiles. Strains L10.10 T and A4R1.5 show less than 90% similarity between them 1 2 88 and less tha n 80% with respect to the strain A4R1.12 in the Dice dendrogram, presenting a 3 4 5 89 high genetic variability with respect to the closely related Pseudomonas species (Fig. S1). 6 7 8 90 Colony morphologies of the three strains were observed after 48 h of incubation on LB agar. 9 10 11 91 Gram-staining was conducted using a Difco Gram stain set followed by observation under a 12 13 92 Leica DM750 microscope (Leica Microsystems). Type of flagellation and cell morphology 14 15 16 93 were documented using a Hitachi TM3030 scanning electron microscope and a scanning 17 18 94 transmission electron microscope (STEM, LIBRA 120; Carl Zeiss AG, Germany). Briefly, 19 20 21 95 cells were grown on LB broth overnight at 25 C, harvested by centrifugation and 22 23 96 resuspended in PBS. The overnight suspension cells were then stained using 1% 24 25 26 97 phosphotungstic acid on a Formvar grid and observed at an operating voltage of 80 kV.
Recommended publications
  • Tesis Doctoral 2014 Filogenia Y Evolución De Las Poblaciones Ambientales Y Clínicas De Pseudomonas Stutzeri Y Otras Especies
    TESIS DOCTORAL 2014 FILOGENIA Y EVOLUCIÓN DE LAS POBLACIONES AMBIENTALES Y CLÍNICAS DE PSEUDOMONAS STUTZERI Y OTRAS ESPECIES RELACIONADAS Claudia A. Scotta Botta TESIS DOCTORAL 2014 Programa de Doctorado de Microbiología Ambiental y Biotecnología FILOGENIA Y EVOLUCIÓN DE LAS POBLACIONES AMBIENTALES Y CLÍNICAS DE PSEUDOMONAS STUTZERI Y OTRAS ESPECIES RELACIONADAS Claudia A. Scotta Botta Director/a: Jorge Lalucat Jo Director/a: Margarita Gomila Ribas Director/a: Antonio Bennasar Figueras Doctor/a por la Universitat de les Illes Balears Index Index ……………………………………………………………………………..... 5 Acknowledgments ………………………………………………………………... 7 Abstract/Resumen/Resum ……………………………………………………….. 9 Introduction ………………………………………………………………………. 15 I.1. The genus Pseudomonas ………………………………………………….. 17 I.2. The species P. stutzeri ………………………………………………......... 23 I.2.1. Definition of the species …………………………………………… 23 I.2.2. Phenotypic properties ………………………………………………. 23 I.2.3. Genomic characterization and phylogeny ………………………….. 24 I.2.4. Polyphasic identification …………………………………………… 25 I.2.5. Natural transformation ……………………………………………... 26 I.2.6. Pathogenicity and antibiotic resistance …………………………….. 26 I.3. Habitats and ecological relevance ………………………………………… 28 I.3.1. Role of mobile genetic elements …………………………………… 28 I.4. Methods for studying Pseudomonas taxonomy …………………………... 29 I.4.1. Biochemical test-based identification ……………………………… 30 I.4.2. Gas Chromatography of Cellular Fatty Acids ................................ 32 I.4.3. Matrix Assisted Laser-Desorption Ionization Time-Of-Flight
    [Show full text]
  • 토양에서 분리한 국내 미기록종 Pseudomonas 속 6종의 생화학적 특성과 계통 분류
    Korean Journal of Microbiology (2019) Vol. 55, No. 1, pp. 39-45 pISSN 0440-2413 DOI https://doi.org/10.7845/kjm.2019.8099 eISSN 2383-9902 Copyright ⓒ 2019, The Microbiological Society of Korea 토양에서 분리한 국내 미기록종 Pseudomonas 속 6종의 생화학적 특성과 계통 분류 김현중1 ・ 정유정2 ・ 김해영1 ・ 허문석2* 1 2 경희대학교 생명과학대학 식품생명공학 전공, 국립생물자원관 생물자원연구부 미생물자원과 Isolation and characterization of 6 unrecorded Pseudomonas spp. from Korean soil 1 2 1 2 Hyun-Joong Kim , You-Jung Jung , Hae-Yeong Kim , and Moonsuk Hur * 1 Institute of Life Sciences and Resources Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea 2 Biological Resources Research Department, National Institute of Biological Resources, Incheon 22689, Republic of Korea (Received November 30, 2018; Revised December 19, 2018; Accepted December 19, 2018) In 2017, as a study to discover indigenous prokaryotic species 물의 공통된 특징은 그람 음성(Gram-negative), 호기성, Oxidase in Korea, a total of 6 bacterial strains assigned to the genus 양성 또는 음성, Catalase 양성, 형태학적으로 간균의 모양을 Pseudomonas were isolated from soil. From the high 16S 하고 있다. DNA의 GC 함량은 58~69 mol%이며 하나 혹은 몇 rRNA gene sequence similarity (≥ 99.5%) and phylogenetic 개의 극편모(polar flagella)를 이용하여 운동성을 갖는 것으로 analysis with closely related species, the isolated strains were 알려져 있으며, 현재까지 총 253개 종이 보고 되어 있다(http:// identified as independent Pseudomonas species which were unrecorded in Korea. The six Pseudomonas species were www.bacterio.net/pseudomonas.html) (Palleroni, 1984; Peix Pseudomonas mandelii, P. canadensis, P. thivervalensis, P. et al., 2009; Mulet et al., 2010).
    [Show full text]
  • Evaluating the Diversity and Phylogeny of Plant Growth Promoting Bacteria Associated with Wheat (Triticum Aestivum) Growing in Central Zone of India
    Int.J.Curr.Microbiol.App.Sci (2014) 3(5): 432-447 ISSN: 2319-7706 Volume 3 Number 5 (2014) pp. 432-447 http://www.ijcmas.com Original Research Article Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India Priyanka Verma1,2, Ajar Nath Yadav1, Sufia Khannam Kazy2, Anil Kumar Saxena1 and Archna Suman1* 1Division of Microbiology, Indian Agricultural Research Institute, New Delhi- 110012, India 2Department of Biotechnology, National Institute of Technology, Durgapur-713209, India *Corresponding author A B S T R A C T The diversity of plant growth promoting bacteria was investigated from wheat growing in different sites in central zone of India. Epiphytic, endophytic and rhizospheric bacteria were isolated using different growth medium. Bacterial diversity was analysed through amplified ribosomal DNA restriction analysis K e y w o r d s (ARDRA) using three restriction enzymes Alu I, Hae III, and Msp I which led to the grouping of 348 isolates into 24-29 clusters at >75% similarity index. 16S Epiphytic; rRNA gene based phylogenetic analysis, revealed that 134 strains belonged to three Endophytic; phyla namely actinobacteria, firmicutes and proteobacteria with 38 distinct species of 17 genera. Bacillus and Pseudomonas were dominant in rhizosphere while Rhizospheric; Methylobacterium were in phyllosphere. Endophytic niche specific bacteria were PGPB; identified as Delftia and Micrococcus. Sampling of different sites showed variation Drought in diversity indices. In vitro plant growth promoting activities of bacteria exposed stress; more than three beneficial traits which may act independently or concurrently. Biocontrol Phosphate solubilization and siderophores production are the predominant traits exhibited by these microbes.
    [Show full text]
  • Molecular Analysis of the Bacterial Communities in Crude Oil Samples from Two Brazilian Offshore Petroleum Platforms
    Hindawi Publishing Corporation International Journal of Microbiology Volume 2012, Article ID 156537, 8 pages doi:10.1155/2012/156537 Research Article Molecular Analysis of the Bacterial Communities in Crude Oil Samples from Two Brazilian Offshore Petroleum Platforms Elisa Korenblum,1 Diogo Bastos Souza,1 Monica Penna,2 and Lucy Seldin1 1 Laborat´orio de Gen´etica Microbiana, Instituto de Microbiologia Prof. Paulo de G´oes, Universidade Federal do Rio de Janeiro, Centro de Ciˆencias da Sa´ude, Bloco I, Ilha do Fund˜ao, 21941-590 Rio de Janeiro, RJ, Brazil 2 Gerˆencia de Biotecnologia e Tratamentos Ambientais, CENPES-PETROBRAS, Ilha do Fund˜ao, 21949-900 Rio de Janeiro, RJ, Brazil Correspondence should be addressed to Lucy Seldin, [email protected] Received 18 April 2011; Revised 11 June 2011; Accepted 13 October 2011 Academic Editor: J. Wiegel Copyright © 2012 Elisa Korenblum et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Crude oil samples with high- and low-water content from two offshore platforms (PA and PB) in Campos Basin, Brazil, were assessed for bacterial communities by 16S rRNA gene-based clone libraries. RDP Classifier was used to analyze a total of 156 clones within four libraries obtained from two platforms. The clone sequences were mainly affiliated with Gammaproteobacteria (78.2% of the total clones); however, clones associated with Betaproteobacteria (10.9%), Alphaproteobacteria (9%), and Firmicutes (1.9%) were also identified. Pseudomonadaceae was the most common family affiliated with these clone sequences.
    [Show full text]
  • Estudio Molecular De Poblaciones De Pseudomonas Ambientales
    Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES T E S I S D O C T O R A L DAVID SÁNCHEZ BERMÚDEZ DIRECTORA: ELENA GARCÍA-VALDÉS PUKKITS Departamento de Biología Universitat de les Illes Balears Palma de Mallorca, Septiembre 2013 Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES Tesis Doctoral presentada por David Sánchez Bermúdez para optar al título de Doctor en el programa Microbiología Ambiental y Biotecnología, de la Universitat de les Illes Balears, bajo la dirección de la Dra. Elena García-Valdés Pukkits. Vo Bo Director de la Tesis El doctorando DRA. ELENA GARCÍA-VALDÉS PUKKITS DAVID SÁNCHEZ BERMÚDEZ Catedrática de Universidad Universitat de les Illes Balears PALMA DE MALLORCA, SEPTIEMBRE 2013 III IV Index Agradecimientos .................................................................................................... IX Resumen ................................................................................................................ 1 Abstract ................................................................................................................... 3 Introduction ............................................................................................................ 5 I.1. The genus Pseudomonas ............................................................................................ 7 I.1.1. Definition ................................................................................................................ 7 I.1.2.
    [Show full text]
  • Pseudomonas Helmanticensis Sp. Nov., Isolated from Forest Soil
    International Journal of Systematic and Evolutionary Microbiology (2014), 64, 2338–2345 DOI 10.1099/ijs.0.063560-0 Pseudomonas helmanticensis sp. nov., isolated from forest soil Martha-Helena Ramı´rez-Bahena,1,2 Maria Jose´ Cuesta,1 Jose´ David Flores-Fe´lix,3 Rebeca Mulas,4 Rau´l Rivas,2,3 Joao Castro-Pinto,5 Javier Bran˜as,5 Daniel Mulas,5 Fernando Gonza´lez-Andre´s,4 Encarna Vela´zquez2,3 and A´ lvaro Peix1,2 Correspondence 1Instituto de Recursos Naturales y Agrobiologı´a, IRNASA-CSIC, Salamanca, Spain A´ lvaro Peix 2Unidad Asociada Grupo de Interaccio´n Planta-Microorganismo, [email protected] Universidad de Salamanca-IRNASA (CSIC), Salamanca, Spain 3Departamento de Microbiologı´a y Gene´tica, Universidad de Salamanca, Salamanca, Spain 4Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de Leo´n, Leo´n, Spain 5Fertiberia S. A., Madrid, Spain A bacterial strain, OHA11T, was isolated during the course of a study of phosphate-solubilizing bacteria occurring in a forest soil from Salamanca, Spain. The 16S rRNA gene sequence of strain OHA11T shared 99.1 % similarity with respect to Pseudomonas baetica a390T, and 98.9 % similarity with the type strains of Pseudomonas jessenii, Pseudomonas moorei, Pseudomonas umsongensis, Pseudomonas mohnii and Pseudomonas koreensis. The analysis of housekeeping genes rpoB, rpoD and gyrB confirmed its phylogenetic affiliation to the genus Pseudomonas and showed similarities lower than 95 % in almost all cases with respect to the above species. Cells possessed two polar flagella. The respiratory quinone was Q9. The major fatty acids were C16 : 0, C18 : 1v7c and summed feature 3 (C16 : 1v7c/iso-C15 : 0 2-OH).
    [Show full text]
  • Evolutionary Patchwork of an Insecticidal Toxin
    Ruffner et al. BMC Genomics (2015) 16:609 DOI 10.1186/s12864-015-1763-2 RESEARCH ARTICLE Open Access Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus Beat Ruffner1, Maria Péchy-Tarr2, Monica Höfte3, Guido Bloemberg4, Jürg Grunder5, Christoph Keel2* and Monika Maurhofer1* Abstract Background: Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. Results: Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. Conclusions: Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.
    [Show full text]
  • Pseudomonas Chlororaphis PA23 Biocontrol of Sclerotinia Sclerotiorum on Canola
    Pseudomonas chlororaphis PA23 Biocontrol of Sclerotinia sclerotiorum on Canola: Understanding Populations and Enhancing Inoculation LORI M. REIMER A Thesis Submitted to the Faculty of Graduate Studies In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE Department of Plant Science University of Manitoba Winnipeg, Manitoba © Copyright by Lori M. Reimer 2016 GENERAL ABSTRACT Reimer, Lori M. M.Sc., The University of Manitoba, June 2016. Pseudomonas chlroraphis PA23 Biocontrol of Sclerotinia sclerotiorum on Canola: Understanding Populations and Enhancing Inoculation. Supervisor, Dr. Dilantha Fernando. Pseudomonas chlororaphis strain PA23 has demonstrated biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary, a fungal pathogen of canola (Brassica napus L.). This biocontrol is mediated through the production of secondary metabolites, of which the antibiotics pyrrolnitrin and phenazine are major contributers. The objectives of this research were two-fold: to optimize PA23 phyllosphere biocontrol and to investigate PA23’s influence in the rhizosphere. PA23 demonstrated longevity, both in terms of S. sclerotiorum biocontrol and by having viable cells after 7 days, when inoculated on B. napus under greenhouse conditions. Carbon source differentially effected growth rate and antifungal metabolite production of PA23 in culture. PA23 grew fasted in glucose and glycerol, while mannose lead to the greatest inhibition of S. sclerotiorum mycelia and fructose lead to the highest levels of antibiotic production relative to cell density. Carbon source did not have a significant effect on in vivo biocontrol. PA23 demonstrated biocontrol ability of the fungal root pathogens Rhizoctonia solani J.G. Kühn and Pythium ultimum Trow in radial diffusion assays. PA23’s ability to promote seedling root growth was demonstrated in sterile growth pouches, but in a soil system these results were reversed.
    [Show full text]
  • Plant Biotechnology
    The Scientific World Journal Plant Biotechnology Guest Editors: Khalid Mahmood Khawar, Selma Onarici, Cigdem Alev Ozel, Muhammad Aasim, Allah Bakhsh, and Abdul Qayyum Rao Plant Biotechnology The Scientific World Journal Plant Biotechnology Guest Editors: Khalid Mahmood Khawar, Selma Onarici, Cigdem Alev Ozel, Muhammad Aasim, Allah Bakhsh, and Abdul Qayyum Rao Copyright © 2013 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “The Scientific World Journal.”All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Plant Biotechnology, Khalid Mahmood Khawar, Selma Onarici, Cigdem Alev Ozel, Muhammad Aasim, Allah Bakhsh, and Abdul Qayyum Rao Volume 2013, Article ID 736731, 2 pages AComparisonofIceColdWaterPretreatmentand-Bromonaphthalene Cytogenetic Method for Identification of Papaver Species, Amir Rezaei Osalou, Sheida Daneshvar Rouyandezagh, Behrouz Alizadeh, Celal Er, and Cafer Sirri Sevimay Volume 2013, Article ID 608650, 6 pages Induction and Analysis of the Alkaloid Mitragynine Content of a Mitragyna speciosa Suspension Culture System upon Elicitation and Precursor Feeding, Nor Nahazima Mohamad Zuldin, Ikram Md. Said, Normah Mohd Noor, Zamri Zainal, Chew Jin Kiat, and Ismanizan Ismail Volume 2013, Article ID 209434, 11 pages Annotation of Differentially Expressed Genes in the Somatic Embryogenesis of Musa and Their Location
    [Show full text]
  • Symbiotic Bacteria Associated with Ascidian Vanadium Accumulation Identified by 16S Rrna Amplicon Sequencing
    Symbiotic bacteria associated with ascidian vanadium accumulation identified by 16S rRNA amplicon sequencing Author Tatsuya Ueki, Manabu Fujie, Romaidi, Noriyuki Satoh journal or Marine Genomics publication title volume 43 page range 33-42 year 2018-11-09 Publisher Elsevier B.V. Rights (C) 2018 The Author(s). Author's flag publisher URL http://id.nii.ac.jp/1394/00000917/ doi: info:doi/10.1016/j.margen.2018.10.006 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (https://creativecommons.org/licenses/by-nc-nd/4.0/) Marine Genomics 43 (2019) 33–42 Contents lists available at ScienceDirect Marine Genomics journal homepage: www.elsevier.com/locate/margen Full length article Symbiotic bacteria associated with ascidian vanadium accumulation identified by 16S rRNA amplicon sequencing T ⁎ Tatsuya Uekia,b, , Manabu Fujiec, Romaidia,d, Noriyuki Satohe a Molecular Physiology Laboratory, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan b Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima, Japan c DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan d Biology Department, Science and Technology Faculty, State Islamic University of Malang, Malang, Jawa Timur, Indonesia e Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan ARTICLE INFO ABSTRACT Keywords: Ascidians belonging to Phlebobranchia accumulate vanadium to an extraordinary degree (≤ 350 mM). Bacterial population Vanadium levels are strictly regulated and vary among ascidian species; thus, they represent well-suited models 16S rRNA for studies on vanadium accumulation. No comprehensive study on metal accumulation and reduction in marine Marine invertebrates organisms in relation to their symbiotic bacterial communities has been published.
    [Show full text]
  • Rapport Nederlands
    Moleculaire detectie van bacteriën in dekaarde Dr. J.J.P. Baars & dr. G. Straatsma Plant Research International B.V., Wageningen December 2007 Rapport nummer 2007-10 © 2007 Wageningen, Plant Research International B.V. Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand, of openbaar gemaakt, in enige vorm of op enige wijze, hetzij elektronisch, mechanisch, door fotokopieën, opnamen of enige andere manier zonder voorafgaande schriftelijke toestemming van Plant Research International B.V. Exemplaren van dit rapport kunnen bij de (eerste) auteur worden besteld. Bij toezending wordt een factuur toegevoegd; de kosten (incl. verzend- en administratiekosten) bedragen € 50 per exemplaar. Plant Research International B.V. Adres : Droevendaalsesteeg 1, Wageningen : Postbus 16, 6700 AA Wageningen Tel. : 0317 - 47 70 00 Fax : 0317 - 41 80 94 E-mail : [email protected] Internet : www.pri.wur.nl Inhoudsopgave pagina 1. Samenvatting 1 2. Inleiding 3 3. Methodiek 8 Algemene werkwijze 8 Bestudeerde monsters 8 Monsters uit praktijkteelten 8 Monsters uit proefteelten 9 Alternatieve analyse m.b.v. DGGE 10 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 11 4. Resultaten 13 Monsters uit praktijkteelten 13 Monsters uit proefteelten 16 Alternatieve analyse m.b.v. DGGE 23 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 25 5. Discussie 28 6. Conclusies 33 7. Suggesties voor verder onderzoek 35 8. Gebruikte literatuur. 37 Bijlage I. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit commerciële teelten I-1 Bijlage II. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit experimentele teelten II-1 1 1.
    [Show full text]
  • Management of Tomato Diseases Caused by Fusarium Oxysporum
    Crop Protection 73 (2015) 78e92 Contents lists available at ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Management of tomato diseases caused by Fusarium oxysporum R.J. McGovern a, b, * a Chiang Mai University, Department of Entomology and Plant Pathology, Chiang Mai 50200, Thailand b NBD Research Co., Ltd., 91/2 Rathburana Rd., Lampang 52000, Thailand article info abstract Article history: Fusarium wilt (FW) and Fusarium crown and root rot (FCRR) of tomato (Solanum lycopersicum) caused by Received 12 November 2014 Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici, respectively, continue to Received in revised form present major challenges for production of this important crop world-wide. Intensive research has led to 21 February 2015 an increased understanding of these diseases and their management. Recent research on the manage- Accepted 23 February 2015 ment of FW and FCRR has focused on diverse individual strategies and their integration including host Available online 12 March 2015 resistance, and chemical, biological and physical control. © 2015 Elsevier Ltd. All rights reserved. Keywords: Fusarium oxysporum f. sp. lycopersici F. oxysporum f. sp. radicis-lycopersici Fusarium wilt Fusarium crown and root rot Solanum lycopersicum Integrated disease management Host resistance Biological control Methyl bromide alternatives 1. Background production. Losses from FW can be very high given susceptible host- virulent pathogen combinations (Walker,1971); yield losses of up to Fusarium oxysporum represents a species complex that includes 45% were recently reported in India (Ramyabharathi et al., 2012). many important plant and human pathogens and toxigenic micro- Losses from FCRR in greenhouse tomato have been estimated at up organisms (Nelson et al., 1981; Laurence et al., 2014).
    [Show full text]