The Complete Plastid Genome of the Holoparasite Cytinus Hypocistis (Cytinaceae)

Total Page:16

File Type:pdf, Size:1020Kb

The Complete Plastid Genome of the Holoparasite Cytinus Hypocistis (Cytinaceae) Annals of Botany 118: 885–896, 2016 doi:10.1093/aob/mcw135, available online at www.aob.oxfordjournals.org Understanding the evolution of holoparasitic plants: the complete plastid genome of the holoparasite Cytinus hypocistis (Cytinaceae) Cristina Roquet1,2,*, Eric Coissac1,2, Corinne Cruaud3, Martı Boleda1,2, Fre´de´ric Boyer1,2, Adriana Alberti3, Ludovic Gielly1,2, Pierre Taberlet1,2, Wilfried Thuiller1,2,Je´re´mie Van Es4 and Se´bastien Lavergne1,2 1Laboratoire d’Ecologie Alpine, Universite´Grenoble Alpes, BP 53, FR-38000 Grenoble, France, 2Laboratoire d’Ecologie Alpine, CNRS, BP 53, FR-38000 Grenoble, France, 3CEA-Institut de Ge´nomique, Genoscope, Centre National de Se´quenc¸age, FR-91057 Evry Cedex, France and 4Conservatoire Botanique National Alpin, Domaine de Charance, FR-05000 Gap, France *For correspondence. E-mail [email protected] Received: 2 March 2016 Returned for revision: 9 April 2016 Accepted: 12 May 2016 Published electronically: 21 July 2016 Downloaded from Background and Aims Plant plastid genomes are highly conserved in size, gene content and structure; however, parasitic plants are a noticeable exception to this evolutionary stability. Although the evolution of parasites could help to better understand plastome evolution in general, complete plastomes of parasites have been sequenced only for some lineages so far. Here we contribute to filling this gap by providing and analysing the complete plastome se- quence of Cytinus hypocistis, the first parasite sequenced for Malvales and a species suspected to have an extremely http://aob.oxfordjournals.org/ small genome. Methods We sequenced and assembled de novo the plastid genome of Cytinus hypocistis using a shotgun ap- proach on genomic DNA. Phylogenomic analyses based on coding regions were performed on Malvidae. For each coding region present in Cytinus, we tested for relaxation or intensification of selective pressures in the Cytinus lin- eage compared with autotrophic Malvales. Key Results Cytinus hypocistis has an extremely divergent genome that is among the smallest sequenced to date (19Á4 kb), with only 23 genes and no inverted repeat regions. Phylogenomic analysis confirmed the position of Cytinus within Malvales. All coding regions of Cytinus plastome presented very high substitution rates compared with non-parasitic Malvales. Conclusions Some regions were inferred to be under relaxed negative selection in Cytinus, suggesting that further at INIST-CNRS on November 30, 2016 plastome reduction is occurring due to relaxed purifying selection associated with the loss of photosynthetic activ- ity. On the other hand, increased selection intensity and strong positive selection were detected for rpl22 in the Cytinus lineage, which might indicate an evolutionary role in the host–parasite arms race, a point that needs further research. Key words: Chloroplast genome, Cytinaceae, Cytinus hypocistis, Malvales, parasite, mycoheterotroph, plastome evolution, selective pressure. INTRODUCTION sequences have not been reported for some parasite lineages, and for others only one or few species have been studied. This The chloroplast genome (i.e. plastome) of seed plants is well gap is unfortunate, as it would permit a more general under- known for being remarkably conserved in size, structure and standing of the evolutionary forces that shape plastomes. gene content across the tree of life (Jansen and Ruhlman, 2012). The most striking exceptions to the evolutionary stability of the plastome have been described in parasite species (Westwood Evolutionary forces driving plastome reduction et al., 2010), which show a clear tendency towards plastome re- Since the main function of chloroplasts is photosynthesis, a duction (11–100 kb) in comparison with their autotrophic relatives (usually 120–170 kb; Ruhlman and Jansen, 2014). major question is why a plastid genome is maintained in non- This reduction is more pronounced in holoparasites, which are photosynthetic plants. Barbrook and colleagues (2006) pro- incapable of photosynthesis and thus completely dependent on posed the ‘essential tRNAs’ hypothesis, which is based on the their hosts for their nutrition. For instance, the plastome of the observation that the plastid trnE is involved in the synthesis of endoparasite Pilostyles aethiopica (Apodanthaceae) is the tetrapyrroles (i.e. molecules required for vital processes such as smallest reported to date for land plants, with 11 kb and five cellular respiration) and cannot be functionally replaced by any possibly functional genes (Bellot and Renner, 2016). In cytosolic tRNA for this function (Kumar et al.,1996). Orobanchaceae, the most studied plant parasite lineage to date, Therefore, even non-photosynthetic plants would need to retain some mechanisms of DNA retention have been suggested trnE (along with the machinery for its transcription), in order to (Wicke et al., 2013), but our understanding of plastome evolu- be able to synthesize essential tetrapyrroles such as the haem tion in parasites remains limited because complete plastome component of mitochondrial cytochromes and other essential VC The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: [email protected] 886 Roquet et al. — The plastid genome of the holoparasite Cytinus hypocistis (Cytinaceae) oxidative enzymes (Barbrook et al.,2006). However, two with those genes in operons. Regarding Santalales (a large recent studies based on high-throughput DNA sequencing af- order of plants consisting almost entirely of hemiparasites), firmed that plastid genomes had vanished at least in two non- only four species have had their plastome sequenced; the most photosynthetic organisms – the parasitic plant Rafflesia prominent plastome modifications were found in the species lagascae (Molina et al.,2014) and the colourless alga with the highest nutritional dependence on the host (Petersen Polytomella (Smith and Lee, 2014) – and a third study stated et al., 2015). Concerning mycoheterotrophs (i.e. species that that no functional tRNAs were found in Pilostyles (Bellot and parasitize other plants using fungi as vectors), several monocot Renner, 2016). These plastome losses would mean that the es- lineages have been studied, showing very different degrees of sential tRNAs hypothesis does not apply for these species, and plastome reduction, especially in orchids (Delannoy et al., that an alternative pathway exists for haem biosynthesis (Smith 2011; Logacheva et al.,2011, 2014; Barrett and Davis, 2012; and Asmail, 2014). Braukmann and Stefanovic, 2012; Barrett et al., 2014; Lam Another question related to plastome maintenance in para- et al., 2015; Schelkunov et al., 2015). In summary, all these sites is why different subsets of genes are retained in the plas- studies converge in showing that the plastome structure of tome of different parasitic species (Fig. 1), even within the parasitic plants is often radically altered in comparison with same genus (Supplementary Data Table S1). Within Cuscuta photosynthetic plants, with extensive gene losses and re- (Convolvulaceae), plastome differences of the four species arrangements in gene order. However, parasitism has inde- Downloaded from studied to date seem to be due to differences in their photosyn- pendently appeared at least 12 times in seed plants (Barkman thetic activity (Funk et al., 2007; McNeal et al., 2007). For et al., 2007; Su et al.,2015), and the fact that the entire plas- Orobanchaceae, the whole plastome has been reported for 16 tome is still not known for several parasite lineages limits our holoparasites and one hemiparasite (Wolfe et al.,1992; Li understanding of the macroevolutionary context of the emer- gence of parasitic lifestyles. et al., 2013; Wicke et al., 2013; Cusimano and Wicke, 2015), http://aob.oxfordjournals.org/ most of them showing notable differences in plastid gene con- tent and length and structural rearrangements. A recent study A new insightful case study in Cytinaceae (Wicke et al.,2013) indicated that the retention of plastid DNA fragments in this family could be affected by both the Our study focuses on Cytinus hypocistis, which belongs to proximity to genes under selection and their co-occurrence Cytinaceae. Cytinus was long considered to belong to Functional gene groups atp genes Ribosomal protein genes ndh genes RNA polymerase, maturase and initiation factor genes at INIST-CNRS on November 30, 2016 Other genes rRNAs Photosynthesis-related genes tRNAs 10 11 11 11 11 11 10 7 11 1 90 32 21 30 30 30 29 30 29 28 29 30 29 30 30 30 30 30 30 28 29 30 30 20 2 18 1 6 10 4 9 29 6 6 6 6 666 6 6 5 5 5 5 8 6 6 29 5 2 5 6 2 2 2 4 5 5 5 4 1 1 2 6 6 6 6 6 6 2 2 2 2 2 2 6 6 66 66 6 6 6 6 2 2 6 6 6 6 6 6 1 6 6 2 6 6 6 60 6 2 6 1 1 4 1 6 6 1 6 2 2 20 21 2 2 2 21 21 20 21 21 21 21 6 21 21 21 21 21 21 21 21 6 21 6 19 21 2 6 20 20 20 20 20 19 20 19 21 20 20 20 20 20 19 19 19 18 1 2 8 8 19 6 4 6 5 5 6 18 5 54 17 16 5 5 55554 54 21 5 5 4 5 3 4 4 44 4 4 16 4 4 3 4 4 Number of genes 1 15 30 5 4 1 1 4 3 3 1 5 15 4 4 4 15 30 31 31 14 30 15 30 30 30 30 30 30 30 29 14 29 29 29 29 29 29 29 29 28 30 29 30 28 29 28 29 26 28 27 28 28 29 27 29 29 15 4 24 21 22 22 2 17 19 18 17 2 2 1 3 6 7 9 3 6 6 0 444444 444444444444444444444444444444444444444444444 Trophic level Autotrophic Hemiparasite Vitis Osyrisvinifera alba Viscum album Cuscuta reflexa Holoparasite Aneura mirabilisHydnora visseri Cuscuta exaltata Piper cenocladum Neottia nidus-avis ViscumViscum crassulae
Recommended publications
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Taxa Named in Honor of Ihsan A. Al-Shehbaz
    TAXA NAMED IN HONOR OF IHSAN A. AL-SHEHBAZ 1. Tribe Shehbazieae D. A. German, Turczaninowia 17(4): 22. 2014. 2. Shehbazia D. A. German, Turczaninowia 17(4): 20. 2014. 3. Shehbazia tibetica (Maxim.) D. A. German, Turczaninowia 17(4): 20. 2014. 4. Astragalus shehbazii Zarre & Podlech, Feddes Repert. 116: 70. 2005. 5. Bornmuellerantha alshehbaziana Dönmez & Mutlu, Novon 20: 265. 2010. 6. Centaurea shahbazii Ranjbar & Negaresh, Edinb. J. Bot. 71: 1. 2014. 7. Draba alshehbazii Klimeš & D. A. German, Bot. J. Linn. Soc. 158: 750. 2008. 8. Ferula shehbaziana S. A. Ahmad, Harvard Pap. Bot. 18: 99. 2013. 9. Matthiola shehbazii Ranjbar & Karami, Nordic J. Bot. doi: 10.1111/j.1756-1051.2013.00326.x, 10. Plocama alshehbazii F. O. Khass., D. Khamr., U. Khuzh. & Achilova, Stapfia 101: 25. 2014. 11. Alshehbazia Salariato & Zuloaga, Kew Bulletin …….. 2015 12. Alshehbzia hauthalii (Gilg & Muschl.) Salariato & Zuloaga 13. Ihsanalshehbazia Tahir Ali & Thines, Taxon 65: 93. 2016. 14. Ihsanalshehbazia granatensis (Boiss. & Reuter) Tahir Ali & Thines, Taxon 65. 93. 2016. 15. Aubrieta alshehbazii Dönmez, Uǧurlu & M.A.Koch, Phytotaxa 299. 104. 2017. 16. Silene shehbazii S.A.Ahmad, Novon 25: 131. 2017. PUBLICATIONS OF IHSAN A. AL-SHEHBAZ 1973 1. Al-Shehbaz, I. A. 1973. The biosystematics of the genus Thelypodium (Cruciferae). Contrib. Gray Herb. 204: 3-148. 1977 2. Al-Shehbaz, I. A. 1977. Protogyny, Cruciferae. Syst. Bot. 2: 327-333. 3. A. R. Al-Mayah & I. A. Al-Shehbaz. 1977. Chromosome numbers for some Leguminosae from Iraq. Bot. Notiser 130: 437-440. 1978 4. Al-Shehbaz, I. A. 1978. Chromosome number reports, certain Cruciferae from Iraq.
    [Show full text]
  • Phylogenetic Position and Generic Limits of Arabidopsis (Brassicaceae)
    PHYLOGENETIC POSITION Steve L. O'Kane, Jr.2 and Ihsan A. 3 AND GENERIC LIMITS OF Al-Shehbaz ARABIDOPSIS (BRASSICACEAE) BASED ON SEQUENCES OF NUCLEAR RIBOSOMAL DNA1 ABSTRACT The primary goals of this study were to assess the generic limits and monophyly of Arabidopsis and to investigate its relationships to related taxa in the family Brassicaceae. Sequences of the internal transcribed spacer region (ITS-1 and ITS-2) of nuclear ribosomal DNA, including 5.8S rDNA, were used in maximum parsimony analyses to construct phylogenetic trees. An attempt was made to include all species currently or recently included in Arabidopsis, as well as species suggested to be close relatives. Our ®ndings show that Arabidopsis, as traditionally recognized, is polyphyletic. The genus, as recircumscribed based on our results, (1) now includes species previously placed in Cardaminopsis and Hylandra as well as three species of Arabis and (2) excludes species now placed in Crucihimalaya, Beringia, Olimar- abidopsis, Pseudoarabidopsis, and Ianhedgea. Key words: Arabidopsis, Arabis, Beringia, Brassicaceae, Crucihimalaya, ITS phylogeny, Olimarabidopsis, Pseudoar- abidopsis. Arabidopsis thaliana (L.) Heynh. was ®rst rec- netic studies and has played a major role in un- ommended as a model plant for experimental ge- derstanding the various biological processes in netics over a half century ago (Laibach, 1943). In higher plants (see references in Somerville & Mey- recent years, many biologists worldwide have fo- erowitz, 2002). The intraspeci®c phylogeny of A. cused their research on this plant. As indicated by thaliana has been examined by Vander Zwan et al. Patrusky (1991), the widespread acceptance of A. (2000). Despite the acceptance of A.
    [Show full text]
  • P020110307527551165137.Pdf
    CONTENT 1.MESSAGE FROM DIRECTOR …………………………………………………………………………………………………………………………………………………… 03 2.ORGANIZATION STRUCTURE …………………………………………………………………………………………………………………………………………………… 05 3.HIGHLIGHTS OF ACHIEVEMENTS …………………………………………………………………………………………………………………………………………… 06 Coexistence of Conserve and Research----“The Germplasm Bank of Wild Species ” services biodiversity protection and socio-economic development ………………………………………………………………………………………………………………………………………………… 06 The Structure, Activity and New Drug Pre-Clinical Research of Monoterpene Indole Alkaloids ………………………………………… 09 Anti-Cancer Constituents in the Herb Medicine-Shengma (Cimicifuga L) ……………………………………………………………………………… 10 Floristic Study on the Seed Plants of Yaoshan Mountain in Northeast Yunnan …………………………………………………………………… 11 Higher Fungi Resources and Chemical Composition in Alpine and Sub-alpine Regions in Southwest China ……………………… 12 Research Progress on Natural Tobacco Mosaic Virus (TMV) Inhibitors…………………………………………………………………………………… 13 Predicting Global Change through Reconstruction Research of Paleoclimate………………………………………………………………………… 14 Chemical Composition of a traditional Chinese medicine-Swertia mileensis……………………………………………………………………………… 15 Mountain Ecosystem Research has Made New Progress ………………………………………………………………………………………………………… 16 Plant Cyclic Peptide has Made Important Progress ………………………………………………………………………………………………………………… 17 Progresses in Computational Chemistry Research ………………………………………………………………………………………………………………… 18 New Progress in the Total Synthesis of Natural Products ………………………………………………………………………………………………………
    [Show full text]
  • Host Specificity in the Parasitic Plant Cytinus Hypocistis
    Hindawi Publishing Corporation Research Letters in Ecology Volume 2007, Article ID 84234, 4 pages doi:10.1155/2007/84234 Research Letter Host Specificity in the Parasitic Plant Cytinus hypocistis C. J. Thorogood and S. J. Hiscock School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK Correspondence should be addressed to C. J. Thorogood, [email protected] Received 2 September 2007; Accepted 14 December 2007 Recommended by John J. Wiens Host specificity in the parasitic plant Cytinus hypocistis was quantified at four sites in the Algarve region of Portugal from 2002 to 2007. The parasite was found to be locally host specific, and only two hosts were consistently infected: Halimium halimifolium and Cistus monspeliensis. C. hypocistis did not infect hosts in proportion to their abundance; at three sites, 100% of parasites occurred on H. halimifolium which represented just 42.4%, 3% and 19.7% of potential hosts available, respectively. At the remaining site, where H. halimifolium was absent, 100% of parasites occurred on C. monspeliensis which represented 81.1% of potential hosts available. Other species of potential host were consistently uninfected irrespective of their abundance. Ecological niche divergence of host plants H. halimifolium and C. monspeliensis may isolate host-specific races of C. hypocistis, thereby potentially driving al- lopatric divergence in this parasitic plant. Copyright © 2007 C. J. Thorogood and S. J. Hiscock. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. INTRODUCTION host plant (see Figure 1).
    [Show full text]
  • On a New Genus of Cytinaceae 1) by Kiyohiko Watanabe Received on 7 October, 1936. So Far 6 Species of the Genus Cytinus Are Know
    The Botanical Magazine published by the Botanical Society of Japan, Volume L, Nos. 589-600, Tokyo, 1936. On a New Genus of Cytinaceae 1) by Kiyohiko Watanabe Received on 7 October, 1936. So far 6 species of the genus Cytinus are known: C. hypocistis L., C. sanguineus (THUNB.) HARMS, (= C. dioicus JUSS), C. capensis MARLOTH, C. glandulosus JUMELLE, C. malagasicus JUMELLE & PERRIER and C. baroni BAKER f. The first is a resident of the Mediterranean area, the second and third in South Africa and the latter 3 species in Madagascar. BAKER, 2) the first who had examined and diagnosed C. baroni, left however C. baroni arranged separately from the remaining species in a special subgenus Botryocytinus because of its peculiar structure. But later other researchers gave under eight on this difference, and HARMS 3) like SOLMS LAUBACH 4) left all Cytinus species arranged in two sections; in the first section Eucytinus C. hypocystis and C. capensis, in the second section Hypolepis C. sanguineus, C. malagasicus, C. glandulosus and C. Baroni. C. Baroni, which was hardly examined by anybody after BAKER’s first description, had been found again in November 1912 by PERRIER DE LA BATHIE, 5) this specimen by the kindly sympathetic consideration of Mr. Prof Dr. JUMELLE in Marseille has arrived in my hands. I examined this gift of a male flower and arrived to the conclusion that difference between C. baroni and other Cytinus species are so remarkable that one must create a special genus for C. baroni. When Professor JUMELLE did not consent, regardless of my suggestion, on the establishment of a new genus for this species, we would like to carry this out here through our hands.
    [Show full text]
  • D.1A Floral and Faunal Compendia
    Appendix D.1a Floral and Faunal Compendia APPENDIX D.1a FLORAL AND FAUNAL COMPENDIA INTRODUCTION TO FLORAL AND FAUNAL SURVEY Expected site use by wildlife is derived from survey information combined with documented habitat preferences of regional wildlife species, which, whether or not recorded during the survey, are considered likely to include the project area within their range. Habitat designations used in this report are according to the classification system of Holland (1986). Floral taxonomy used in this report follows the Jepson Manual (Hickman 1993), with updates in accordance to the online Jepson Interchange where known. Common plant names, where not available from Munz (1974), are taken from Abrams (1923), Robbins, et al. (1951), Collins (1972), Niehaus and Ripper (1976) and Muns (1983). Vertebrates identified in the field by sight, calls, tracks, scat or other signs are cited according to the nomenclature of Jennings (1983) for amphibians and reptiles; AOU (1983) for birds; and Jones, et al. (1982) for mammals. Butterflies observed or collected in the field were identified with the help of Garth and Tilden (1986) and Tilden and Smith (1986). FLORAL COMPENDIUM1 LEGEND * Nonnative @ Ornamental/Landscape VASCULAR PLANTS CONIFERAE PINACEAE - PINE FAMILY * Pinus halepensis Aleppo Pine ANGIOSPERMAE (DICOTYLEDONS) ANACARDIACEAE - SUMAC FAMILY Malosma laurina laurel sumac Rhus ovata sugar bush * Schinus molle Peruvian pepper-tree Toxicodendron diversilobum poison-oak APOCYNACEAE - DOGBANE FAMILY * Vinca major periwinkle * Nerium oleander oleander ASTERACEAE - SUNFLOWER FAMILY Baccharis pilularis coyote brush Baccharis salicifolia mulefat Helianthus gracilentus slender sunflower * Picris echioides bristly ox-tongue * Silybum marianum milk thistle * Sonchus asper prickly sow-thistle * Sonchus oleraceus common sow-thistle Stephanomeria virgata twiggy wreathplant BRASSICACEAE - MUSTARD FAMILY * Brassica nigra black mustard * Sisymbrium officinale hedge-mustard CAPRIFOLIACEAE - HONEYSUCKLE FAMILY Sambuccus.
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Genus Cistus
    REVIEW ARTICLE published: 11 June 2014 doi: 10.3389/fchem.2014.00035 Genus Cistus: a model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties Dimitra Papaefthimiou 1, Antigoni Papanikolaou 1†, Vasiliki Falara 2†, Stella Givanoudi 1, Stefanos Kostas 3 and Angelos K. Kanellis 1* 1 Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece 2 Department of Chemical Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA 3 Department of Floriculture, School of Agriculture, Aristotle University of Thessaloniki,Thessaloniki, Greece Edited by: The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with Matteo Balderacchi, Università 5 genera native to the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum,and Cattolica del Sacro Cuore, Italy Tuberaria). Traditionally, a number of Cistus species have been used in Mediterranean folk Reviewed by: medicine as herbal tea infusions for healing digestive problems and colds, as extracts Nikoletta Ntalli, l’Università degli Studi di Cagliari, Italy for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the Carolyn Frances Scagel, United glandular trichomes of certain Cistus species contains a number of phytochemicals States Department of Agriculture, with antioxidant, antibacterial, antifungal, and anticancer properties. Furthermore, total USA leaf aqueous extracts possess anti-influenza virus activity. All these properties have Maurizio Bruno, University of Palermo, Italy been attributed to phytochemicals such as terpenoids, including diterpenes, labdane-type *Correspondence: diterpenes and clerodanes, phenylpropanoids, including flavonoids and ellagitannins, Angelos K. Kanellis, Group of several groups of alkaloids and other types of secondary metabolites.
    [Show full text]
  • Parallel Evolution of Highly Conserved Plastid Genome Architecture in Red Seaweeds and Seed Plants
    Lee et al. BMC Biology (2016) 14:75 DOI 10.1186/s12915-016-0299-5 RESEARCH ARTICLE Open Access Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants JunMo Lee1, Chung Hyun Cho1, Seung In Park1, Ji Won Choi1, Hyun Suk Song1, John A. West2, Debashish Bhattacharya3† and Hwan Su Yoon1*† Abstract Background: The red algae (Rhodophyta) diverged from the green algae and plants (Viridiplantae) over one billion years ago within the kingdom Archaeplastida. These photosynthetic lineages provide an ideal model to study plastid genome reduction in deep time. To this end, we assembled a large dataset of the plastid genomes that were available, including 48 from the red algae (17 complete and three partial genomes produced for this analysis) to elucidate the evolutionary history of these organelles. Results: We found extreme conservation of plastid genome architecture in the major lineages of the multicellular Florideophyceae red algae. Only three minor structural types were detected in this group, which are explained by recombination events of the duplicated rDNA operons. A similar high level of structural conservation (although with different gene content) was found in seed plants. Three major plastid genome architectures were identified in representatives of 46 orders of angiosperms and three orders of gymnosperms. Conclusions: Our results provide a comprehensive account of plastid gene loss and rearrangement events involving genome architecture within Archaeplastida and lead to one over-arching conclusion: from an ancestral pool of highly rearranged plastid genomes in red and green algae, the aquatic (Florideophyceae) and terrestrial (seed plants) multicellular lineages display high conservation in plastid genome architecture.
    [Show full text]
  • 1 Sanguisuga, a New Genus of Neotropical Cytinaceae And
    http://www.icn.unal.edu.co/ Caldasia 34 (2): 291-308. 2012 SANGUISUGA, A NEW GENUS OF NEOTROPICAL CYTINACEAE AND SOUTH AMERICAN CONNECTION IN THE FAMILY Sanguisuga, Un Género Nuevo Neotropical De Cytinaceae Y Una Conexión Sudamericana En La Familia José Luis Fernández-Alonso Real Jardín Botánico, RJB-CSIC, Consejo Superior de Investigaciones Científicas, Plaza de Murillo 2, 28014 Madrid, España. [email protected]: Autor correspondencia. Hermes Cuadros-Villalobos Postgrado Biología-Línea Biodiveridad y Conservación, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Apartado 7495, Bogotá D.C. Colombia. ABSTRACT Sanguisuga caesarea, a new genus and species of Cytinaceae from Colombia and the first record of this family in South America, is described and illustrated. Sanguisuga is close to Bdallophytum but differs from it by exhibiting andromonoecia, with male flowers only at the base of the inflorescence, flowers zygomorphic, semiclosed, and dorsoventrally compressed. The tongue-shaped tepals are arched, curved inwards and include a ventral, sigmoid, nectar-secreting tepal. The elongated seeds are obpyriform with a length/width ratio of 1,5-1,8. Key words. Bdallophytum, Colombia, Cytinaceae, parasitic plants, South America, taxonomy. RESUMEN Se describe e ilustra a Sanguisuga caesarea, un género nuevo y una especie nueva de Cytinaceae de Colombia y el primer registro de esta familia en Sudamérica. El género nuevo es afín a Bdallophytum pero se diferencia por presentar andromonoecia, con las flores masculinas en la base de la inflorescencia, flores zigomorfas comprimidas dorsiventralmente, semicerradas, con los tépalos arqueados e incurvos; tépalo inferior- medio sigmoide-lingüiforme y nectarífero y las semillas más alargadas, obpiriformes con una relación largo/ancho de 1,5-1,8.
    [Show full text]
  • The Strength of Negative Plant–Soil Feedback Increases from the Intraspecific to the Interspecific and the Functional Group Level
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Repository of the Freie Universität Berlin Received: 14 July 2017 | Revised: 20 November 2017 | Accepted: 21 November 2017 DOI: 10.1002/ece3.3755 ORIGINAL RESEARCH The strength of negative plant–soil feedback increases from the intraspecific to the interspecific and the functional group level Alexandra R. Bukowski1 | Conrad Schittko2,3 | Jana S. Petermann3,4 1Institute of Biology, Freie Universität Berlin, Berlin, Germany Abstract 2Institute of Biochemistry and One of the processes that may play a key role in plant species coexistence and ecosys- Biology, Biodiversity Research/Systematic tem functioning is plant–soil feedback, the effect of plants on associated soil commu- Botany, University of Potsdam, Potsdam, Germany nities and the resulting feedback on plant performance. Plant–soil feedback at the 3Berlin-Brandenburg Institute of Advanced interspecific level (comparing growth on own soil with growth on soil from different Biodiversity Research (BBIB), Berlin, Germany species) has been studied extensively, while plant–soil feedback at the intraspecific 4Department of Ecology and Evolution, University of Salzburg, Salzburg, level (comparing growth on own soil with growth on soil from different accessions Austria within a species) has only recently gained attention. Very few studies have investi- Correspondence gated the direction and strength of feedback among different taxonomic levels, and Jana S. Petermann, Berlin-Brandenburg
    [Show full text]