Game Theory Notes: Maskin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Repeated Games
6.254 : Game Theory with Engineering Applications Lecture 15: Repeated Games Asu Ozdaglar MIT April 1, 2010 1 Game Theory: Lecture 15 Introduction Outline Repeated Games (perfect monitoring) The problem of cooperation Finitely-repeated prisoner's dilemma Infinitely-repeated games and cooperation Folk Theorems Reference: Fudenberg and Tirole, Section 5.1. 2 Game Theory: Lecture 15 Introduction Prisoners' Dilemma How to sustain cooperation in the society? Recall the prisoners' dilemma, which is the canonical game for understanding incentives for defecting instead of cooperating. Cooperate Defect Cooperate 1, 1 −1, 2 Defect 2, −1 0, 0 Recall that the strategy profile (D, D) is the unique NE. In fact, D strictly dominates C and thus (D, D) is the dominant equilibrium. In society, we have many situations of this form, but we often observe some amount of cooperation. Why? 3 Game Theory: Lecture 15 Introduction Repeated Games In many strategic situations, players interact repeatedly over time. Perhaps repetition of the same game might foster cooperation. By repeated games, we refer to a situation in which the same stage game (strategic form game) is played at each date for some duration of T periods. Such games are also sometimes called \supergames". We will assume that overall payoff is the sum of discounted payoffs at each stage. Future payoffs are discounted and are thus less valuable (e.g., money and the future is less valuable than money now because of positive interest rates; consumption in the future is less valuable than consumption now because of time preference). We will see in this lecture how repeated play of the same strategic game introduces new (desirable) equilibria by allowing players to condition their actions on the way their opponents played in the previous periods. -
Lecture 4 Rationalizability & Nash Equilibrium Road
Lecture 4 Rationalizability & Nash Equilibrium 14.12 Game Theory Muhamet Yildiz Road Map 1. Strategies – completed 2. Quiz 3. Dominance 4. Dominant-strategy equilibrium 5. Rationalizability 6. Nash Equilibrium 1 Strategy A strategy of a player is a complete contingent-plan, determining which action he will take at each information set he is to move (including the information sets that will not be reached according to this strategy). Matching pennies with perfect information 2’s Strategies: HH = Head if 1 plays Head, 1 Head if 1 plays Tail; HT = Head if 1 plays Head, Head Tail Tail if 1 plays Tail; 2 TH = Tail if 1 plays Head, 2 Head if 1 plays Tail; head tail head tail TT = Tail if 1 plays Head, Tail if 1 plays Tail. (-1,1) (1,-1) (1,-1) (-1,1) 2 Matching pennies with perfect information 2 1 HH HT TH TT Head Tail Matching pennies with Imperfect information 1 2 1 Head Tail Head Tail 2 Head (-1,1) (1,-1) head tail head tail Tail (1,-1) (-1,1) (-1,1) (1,-1) (1,-1) (-1,1) 3 A game with nature Left (5, 0) 1 Head 1/2 Right (2, 2) Nature (3, 3) 1/2 Left Tail 2 Right (0, -5) Mixed Strategy Definition: A mixed strategy of a player is a probability distribution over the set of his strategies. Pure strategies: Si = {si1,si2,…,sik} σ → A mixed strategy: i: S [0,1] s.t. σ σ σ i(si1) + i(si2) + … + i(sik) = 1. If the other players play s-i =(s1,…, si-1,si+1,…,sn), then σ the expected utility of playing i is σ σ σ i(si1)ui(si1,s-i) + i(si2)ui(si2,s-i) + … + i(sik)ui(sik,s-i). -
Learning and Equilibrium
Learning and Equilibrium Drew Fudenberg1 and David K. Levine2 1Department of Economics, Harvard University, Cambridge, Massachusetts; email: [email protected] 2Department of Economics, Washington University of St. Louis, St. Louis, Missouri; email: [email protected] Annu. Rev. Econ. 2009. 1:385–419 Key Words First published online as a Review in Advance on nonequilibrium dynamics, bounded rationality, Nash equilibrium, June 11, 2009 self-confirming equilibrium The Annual Review of Economics is online at by 140.247.212.190 on 09/04/09. For personal use only. econ.annualreviews.org Abstract This article’s doi: The theory of learning in games explores how, which, and what 10.1146/annurev.economics.050708.142930 kind of equilibria might arise as a consequence of a long-run non- Annu. Rev. Econ. 2009.1:385-420. Downloaded from arjournals.annualreviews.org Copyright © 2009 by Annual Reviews. equilibrium process of learning, adaptation, and/or imitation. If All rights reserved agents’ strategies are completely observed at the end of each round 1941-1383/09/0904-0385$20.00 (and agents are randomly matched with a series of anonymous opponents), fairly simple rules perform well in terms of the agent’s worst-case payoffs, and also guarantee that any steady state of the system must correspond to an equilibrium. If players do not ob- serve the strategies chosen by their opponents (as in extensive-form games), then learning is consistent with steady states that are not Nash equilibria because players can maintain incorrect beliefs about off-path play. Beliefs can also be incorrect because of cogni- tive limitations and systematic inferential errors. -
Use of Mixed Signaling Strategies in International Crisis Negotiations
USE OF MIXED SIGNALING STRATEGIES IN INTERNATIONAL CRISIS NEGOTIATIONS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Unislawa M. Wszolek, B.A., M.A. ***** The Ohio State University 2007 Dissertation Committee: Approved by Brian Pollins, Adviser Daniel Verdier Adviser Randall Schweller Graduate Program in Political Science ABSTRACT The assertion that clear signaling prevents unnecessary war drives much of the recent developments in research on international crises signaling, so much so that this work has aimed at identifying types of clear signals. But if clear signals are the only mechanism for preventing war, as the signaling literature claims, an important puzzle remains — why are signals that combine both carrot and stick components sent and why are signals that are partial or ambiguous sent. While these signals would seemingly work at cross-purposes undermining the signaler’s goals, actually, we observe them frequently in crises that not only end short of war but also that realize the signaler’s goals. Through a game theoretic model, this dissertation theorizes that because these alternatives to clear signals increase the attractiveness, and therefore the likelihood, of compliance they are a more cost-effective way to show resolve and avoid unnecessary conflict than clear signals. In addition to building a game theoretic model, an additional contribution of this thesis is to develop a method for observing mixed versus clear signaling strategies and use this method to test the linkage between signaling and crisis outcomes. Results of statistical analyses support theoretical expectations: clear signaling strategies might not always be the most effective way to secure peace, while mixed signaling strategies can be an effective deterrent. -
Equilibrium Refinements
Equilibrium Refinements Mihai Manea MIT Sequential Equilibrium I In many games information is imperfect and the only subgame is the original game. subgame perfect equilibrium = Nash equilibrium I Play starting at an information set can be analyzed as a separate subgame if we specify players’ beliefs about at which node they are. I Based on the beliefs, we can test whether continuation strategies form a Nash equilibrium. I Sequential equilibrium (Kreps and Wilson 1982): way to derive plausible beliefs at every information set. Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 2 / 38 An Example with Incomplete Information Spence’s (1973) job market signaling game I The worker knows her ability (productivity) and chooses a level of education. I Education is more costly for low ability types. I Firm observes the worker’s education, but not her ability. I The firm decides what wage to offer her. In the spirit of subgame perfection, the optimal wage should depend on the firm’s beliefs about the worker’s ability given the observed education. An equilibrium needs to specify contingent actions and beliefs. Beliefs should follow Bayes’ rule on the equilibrium path. What about off-path beliefs? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 3 / 38 An Example with Imperfect Information Courtesy of The MIT Press. Used with permission. Figure: (L; A) is a subgame perfect equilibrium. Is it plausible that 2 plays A? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 4 / 38 Assessments and Sequential Rationality Focus on extensive-form games of perfect recall with finitely many nodes. An assessment is a pair (σ; µ) I σ: (behavior) strategy profile I µ = (µ(h) 2 ∆(h))h2H: system of beliefs ui(σjh; µ(h)): i’s payoff when play begins at a node in h randomly selected according to µ(h), and subsequent play specified by σ. -
Lecture Notes
GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies .................................. -
SEQUENTIAL GAMES with PERFECT INFORMATION Example
SEQUENTIAL GAMES WITH PERFECT INFORMATION Example 4.9 (page 105) Consider the sequential game given in Figure 4.9. We want to apply backward induction to the tree. 0 Vertex B is owned by player two, P2. The payoffs for P2 are 1 and 3, with 3 > 1, so the player picks R . Thus, the payoffs at B become (0, 3). 00 Next, vertex C is also owned by P2 with payoffs 1 and 0. Since 1 > 0, P2 picks L , and the payoffs are (4, 1). Player one, P1, owns A; the choice of L gives a payoff of 0 and R gives a payoff of 4; 4 > 0, so P1 chooses R. The final payoffs are (4, 1). 0 00 We claim that this strategy profile, { R } for P1 and { R ,L } is a Nash equilibrium. Notice that the 0 00 strategy profile gives a choice at each vertex. For the strategy { R ,L } fixed for P2, P1 has a maximal payoff by choosing { R }, ( 0 00 0 00 π1(R, { R ,L }) = 4 π1(R, { R ,L }) = 4 ≥ 0 00 π1(L, { R ,L }) = 0. 0 00 In the same way, for the strategy { R } fixed for P1, P2 has a maximal payoff by choosing { R ,L }, ( 00 0 00 π2(R, {∗,L }) = 1 π2(R, { R ,L }) = 1 ≥ 00 π2(R, {∗,R }) = 0, where ∗ means choose either L0 or R0. Since no change of choice by a player can increase that players own payoff, the strategy profile is called a Nash equilibrium. Notice that the above strategy profile is also a Nash equilibrium on each branch of the game tree, mainly starting at either B or starting at C. -
Recent Advances in Understanding Competitive Markets
Recent Advances in Understanding Competitive Markets Chris Shannon Department of Economics University of California, Berkeley March 4, 2002 1 Introduction The Arrow-Debreu model of competitive markets has proven to be a remark- ably rich and °exible foundation for studying an array of important economic problems, ranging from social security reform to the determinants of long-run growth. Central to the study of such questions are many of the extensions and modi¯cations of the classic Arrow-Debreu framework that have been ad- vanced over the last 40 years. These include dynamic models of exchange over time, as in overlapping generations or continuous time, and under un- certainty, as in incomplete ¯nancial markets. Many of the most interesting and important recent advances have been spurred by questions about the role of markets in allocating resources and providing opportunities for risk- sharing arising in ¯nance and macroeconomics. This article is intended to give an overview of some of these more recent developments in theoretical work involving competitive markets, and highlight some promising areas for future work. I focus on three broad topics. The ¯rst is the role of asymmetric informa- tion in competitive markets. Classic work in information economics suggests that competitive markets break down in the face of informational asymme- 0 tries. Recently these issues have been reinvestigated from the vantage point of more general models of the market structure, resulting in some surpris- ing results overturning these conclusions and clarifying the conditions under which perfectly competitive markets can incorporate informational asymme- tries. The second concentrates on the testable implications of competitive markets. -
The Monty Hall Problem in the Game Theory Class
The Monty Hall Problem in the Game Theory Class Sasha Gnedin∗ October 29, 2018 1 Introduction Suppose you’re on a game show, and you’re given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what’s behind the doors, opens another door, say No. 3, which has a goat. He then says to you, “Do you want to pick door No. 2?” Is it to your advantage to switch your choice? With these famous words the Parade Magazine columnist vos Savant opened an exciting chapter in mathematical didactics. The puzzle, which has be- come known as the Monty Hall Problem (MHP), has broken the records of popularity among the probability paradoxes. The book by Rosenhouse [9] and the Wikipedia entry on the MHP present the history and variations of the problem. arXiv:1107.0326v1 [math.HO] 1 Jul 2011 In the basic version of the MHP the rules of the game specify that the host must always reveal one of the unchosen doors to show that there is no prize there. Two remaining unrevealed doors may hide the prize, creating the illusion of symmetry and suggesting that the action does not matter. How- ever, the symmetry is fallacious, and switching is a better action, doubling the probability of winning. There are two main explanations of the paradox. One of them, simplistic, amounts to just counting the mutually exclusive cases: either you win with ∗[email protected] 1 switching or with holding the first choice. -
Finitely Repeated Games
Repeated games 1: Finite repetition Universidad Carlos III de Madrid 1 Finitely repeated games • A finitely repeated game is a dynamic game in which a simultaneous game (the stage game) is played finitely many times, and the result of each stage is observed before the next one is played. • Example: Play the prisoners’ dilemma several times. The stage game is the simultaneous prisoners’ dilemma game. 2 Results • If the stage game (the simultaneous game) has only one NE the repeated game has only one SPNE: In the SPNE players’ play the strategies in the NE in each stage. • If the stage game has 2 or more NE, one can find a SPNE where, at some stage, players play a strategy that is not part of a NE of the stage game. 3 The prisoners’ dilemma repeated twice • Two players play the same simultaneous game twice, at ! = 1 and at ! = 2. • After the first time the game is played (after ! = 1) the result is observed before playing the second time. • The payoff in the repeated game is the sum of the payoffs in each stage (! = 1, ! = 2) • Which is the SPNE? Player 2 D C D 1 , 1 5 , 0 Player 1 C 0 , 5 4 , 4 4 The prisoners’ dilemma repeated twice Information sets? Strategies? 1 .1 5 for each player 2" for each player D C E.g.: (C, D, D, C, C) Subgames? 2.1 5 D C D C .2 1.3 1.5 1 1.4 D C D C D C D C 2.2 2.3 2 .4 2.5 D C D C D C D C D C D C D C D C 1+1 1+5 1+0 1+4 5+1 5+5 5+0 5+4 0+1 0+5 0+0 0+4 4+1 4+5 4+0 4+4 1+1 1+0 1+5 1+4 0+1 0+0 0+5 0+4 5+1 5+0 5+5 5+4 4+1 4+0 4+5 4+4 The prisoners’ dilemma repeated twice Let’s find the NE in the subgames. -
Cooperative Strategies in Groups of Strangers: an Experiment
KRANNERT SCHOOL OF MANAGEMENT Purdue University West Lafayette, Indiana Cooperative Strategies in Groups of Strangers: An Experiment By Gabriele Camera Marco Casari Maria Bigoni Paper No. 1237 Date: June, 2010 Institute for Research in the Behavioral, Economic, and Management Sciences Cooperative strategies in groups of strangers: an experiment Gabriele Camera, Marco Casari, and Maria Bigoni* 15 June 2010 * Camera: Purdue University; Casari: University of Bologna, Piazza Scaravilli 2, 40126 Bologna, Italy, Phone: +39- 051-209-8662, Fax: +39-051-209-8493, [email protected]; Bigoni: University of Bologna, Piazza Scaravilli 2, 40126 Bologna, Italy, Phone: +39-051-2098890, Fax: +39-051-0544522, [email protected]. We thank Jim Engle-Warnick, Tim Cason, Guillaume Fréchette, Hans Theo Normann, and seminar participants at the ESA in Innsbruck, IMEBE in Bilbao, University of Frankfurt, University of Bologna, University of Siena, and NYU for comments on earlier versions of the paper. This paper was completed while G. Camera was visiting the University of Siena as a Fulbright scholar. Financial support for the experiments was partially provided by Purdue’s CIBER and by the Einaudi Institute for Economics and Finance. Abstract We study cooperation in four-person economies of indefinite duration. Subjects interact anonymously playing a prisoner’s dilemma. We identify and characterize the strategies employed at the aggregate and at the individual level. We find that (i) grim trigger well describes aggregate play, but not individual play; (ii) individual behavior is persistently heterogeneous; (iii) coordination on cooperative strategies does not improve with experience; (iv) systematic defection does not crowd-out systematic cooperation. -
Incomplete Information I. Bayesian Games
Bayesian Games Debraj Ray, November 2006 Unlike the previous notes, the material here is perfectly standard and can be found in the usual textbooks: see, e.g., Fudenberg-Tirole. For the examples in these notes (except for the very last section), I draw heavily on Martin Osborne’s excellent recent text, An Introduction to Game Theory, Oxford University Press. Obviously, incomplete information games — in which one or more players are privy to infor- mation that others don’t have — has enormous applicability: credit markets / auctions / regulation of firms / insurance / bargaining /lemons / public goods provision / signaling / . the list goes on and on. 1. A Definition A Bayesian game consists of 1. A set of players N. 2. A set of states Ω, and a common prior µ on Ω. 3. For each player i a set of actions Ai and a set of signals or types Ti. (Can make actions sets depend on type realizations.) 4. For each player i, a mapping τi :Ω 7→ Ti. 5. For each player i, a vN-M payoff function fi : A × Ω 7→ R, where A is the product of the Ai’s. Remarks A. Typically, the mapping τi tells us player i’s type. The easiest case is just when Ω is the product of the Ti’s and τi is just the appropriate projection mapping. B. The prior on states need not be common, but one view is that there is no loss of generality in assuming it (simply put all differences in the prior into differences in signals and redefine the state space and si-mappings accordingly).