Characterizing Solution Concepts in Terms of Common Knowledge Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Equilibrium Refinements
Equilibrium Refinements Mihai Manea MIT Sequential Equilibrium I In many games information is imperfect and the only subgame is the original game. subgame perfect equilibrium = Nash equilibrium I Play starting at an information set can be analyzed as a separate subgame if we specify players’ beliefs about at which node they are. I Based on the beliefs, we can test whether continuation strategies form a Nash equilibrium. I Sequential equilibrium (Kreps and Wilson 1982): way to derive plausible beliefs at every information set. Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 2 / 38 An Example with Incomplete Information Spence’s (1973) job market signaling game I The worker knows her ability (productivity) and chooses a level of education. I Education is more costly for low ability types. I Firm observes the worker’s education, but not her ability. I The firm decides what wage to offer her. In the spirit of subgame perfection, the optimal wage should depend on the firm’s beliefs about the worker’s ability given the observed education. An equilibrium needs to specify contingent actions and beliefs. Beliefs should follow Bayes’ rule on the equilibrium path. What about off-path beliefs? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 3 / 38 An Example with Imperfect Information Courtesy of The MIT Press. Used with permission. Figure: (L; A) is a subgame perfect equilibrium. Is it plausible that 2 plays A? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 4 / 38 Assessments and Sequential Rationality Focus on extensive-form games of perfect recall with finitely many nodes. An assessment is a pair (σ; µ) I σ: (behavior) strategy profile I µ = (µ(h) 2 ∆(h))h2H: system of beliefs ui(σjh; µ(h)): i’s payoff when play begins at a node in h randomly selected according to µ(h), and subsequent play specified by σ. -
Lecture Notes
GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies .................................. -
Collusion Constrained Equilibrium
Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K. -
Correlated Equilibria and Communication in Games Françoise Forges
Correlated equilibria and communication in games Françoise Forges To cite this version: Françoise Forges. Correlated equilibria and communication in games. Computational Complex- ity. Theory, Techniques, and Applications, pp.295-704, 2012, 10.1007/978-1-4614-1800-9_45. hal- 01519895 HAL Id: hal-01519895 https://hal.archives-ouvertes.fr/hal-01519895 Submitted on 9 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Correlated Equilibrium and Communication in Games Françoise Forges, CEREMADE, Université Paris-Dauphine Article Outline Glossary I. De…nition of the Subject and its Importance II. Introduction III. Correlated Equilibrium: De…nition and Basic Properties IV. Correlated Equilibrium and Communication V. Correlated Equilibrium in Bayesian Games VI. Related Topics and Future Directions VII. Bibliography Acknowledgements The author wishes to thank Elchanan Ben-Porath, Frédéric Koessler, R. Vijay Krishna, Ehud Lehrer, Bob Nau, Indra Ray, Jérôme Renault, Eilon Solan, Sylvain Sorin, Bernhard von Stengel, Tristan Tomala, Amparo Ur- bano, Yannick Viossat and, especially, Olivier Gossner and Péter Vida, for useful comments and suggestions. Glossary Bayesian game: an interactive decision problem consisting of a set of n players, a set of types for every player, a probability distribution which ac- counts for the players’ beliefs over each others’ types, a set of actions for every player and a von Neumann-Morgenstern utility function de…ned over n-tuples of types and actions for every player. -
Correlated Equilibria 1 the Chicken-Dare Game 2 Correlated
MS&E 334: Computation of Equilibria Lecture 6 - 05/12/2009 Correlated Equilibria Lecturer: Amin Saberi Scribe: Alex Shkolnik 1 The Chicken-Dare Game The chicken-dare game can be throught of as two drivers racing towards an intersection. A player can chose to dare (d) and pass through the intersection or chicken out (c) and stop. The game results in a draw when both players chicken out and the worst possible outcome if they both dare. A player wins when he dares while the other chickens out. The game has one possible payoff matrix given by d c d 0; 0 4; 1 c 1; 4 3; 3 with two pure strategy Nash equilibria (d; c) and (c; d) and one mixed equilibrium where each player mixes the pure strategies with probability 1=2 each. Now suppose that prior to playing the game the players performed the following experiment. The players draw a ball labeled with a strategy, either (c) or (d) from a bag containing three balls labelled c; c; d. The players then agree to follow the strategy suggested by the ball. It can be verified that there is no incentive to deviate from such an agreement since the suggested strategy is best in expectation. This experiment is equivalent to having the following strategy profile chosen for the players by some third party, a correlation device. d c d 0 1=3 c 1=3 1=3 This matrix above is not of rank one and so is not a Nash profile. And, the social welfare in this scenario is 16=3 which is greater than that of any Nash equilibrium. -
Correlated Equilibrium Is a Distribution D Over Action Profiles a Such That for Every ∗ Player I, and Every Action Ai
NETS 412: Algorithmic Game Theory February 9, 2017 Lecture 8 Lecturer: Aaron Roth Scribe: Aaron Roth Correlated Equilibria Consider the following two player traffic light game that will be familiar to those of you who can drive: STOP GO STOP (0,0) (0,1) GO (1,0) (-100,-100) This game has two pure strategy Nash equilibria: (GO,STOP), and (STOP,GO) { but these are clearly not ideal because there is one player who never gets any utility. There is also a mixed strategy Nash equilibrium: Suppose player 1 plays (p; 1 − p). If the equilibrium is to be fully mixed, player 2 must be indifferent between his two actions { i.e.: 0 = p − 100(1 − p) , 101p = 100 , p = 100=101 So in the mixed strategy Nash equilibrium, both players play STOP with probability p = 100=101, and play GO with probability (1 − p) = 1=101. This is even worse! Now both players get payoff 0 in expectation (rather than just one of them), and risk a horrific negative utility. The four possible action profiles have roughly the following probabilities under this equilibrium: STOP GO STOP 98% <1% GO <1% ≈ 0.01% A far better outcome would be the following, which is fair, has social welfare 1, and doesn't risk death: STOP GO STOP 0% 50% GO 50% 0% But there is a problem: there is no set of mixed strategies that creates this distribution over action profiles. Therefore, fundamentally, this can never result from Nash equilibrium play. The reason however is not that this play is not rational { it is! The issue is that we have defined Nash equilibria as profiles of mixed strategies, that require that players randomize independently, without any communication. -
Maximum Entropy Correlated Equilibria
Maximum Entropy Correlated Equilibria Luis E. Ortiz Robert E. Schapire Sham M. Kakade ECE Deptartment Dept. of Computer Science Toyota Technological Institute Univ. of Puerto Rico at Mayaguez¨ Princeton University Chicago, IL 60637 Mayaguez,¨ PR 00681 Princeton, NJ 08540 [email protected] [email protected] [email protected] Abstract cept in game theory and in mathematical economics, where game theory is applied to model competitive economies We study maximum entropy correlated equilib- [Arrow and Debreu, 1954]. An equilibrium is a point of ria (Maxent CE) in multi-player games. After strategic stance between the players in a game that charac- motivating and deriving some interesting impor- terizes and serves as a prediction to a possible outcome of tant properties of Maxent CE, we provide two the game. gradient-based algorithms that are guaranteed to The general problem of equilibrium computation is funda- converge to it. The proposed algorithms have mental in computer science [Papadimitriou, 2001]. In the strong connections to algorithms for statistical last decade, there have been many great advances in our estimation (e.g., iterative scaling), and permit a understanding of the general prospects and limitations of distributed learning-dynamics interpretation. We computing equilibria in games. Just late last year, there also briefly discuss possible connections of this was a breakthrough on what was considered a major open work, and more generally of the Maximum En- problem in the field: computing equilibria was shown tropy Principle in statistics, to the work on learn- to be hard, even for two-player games [Chen and Deng, ing in games and the problem of equilibrium se- 2005b,a, Daskalakis and Papadimitriou, 2005, Daskalakis lection. -
TESIS DOCTORAL Three Essays on Game Theory
UNIVERSIDAD CARLOS III DE MADRID TESIS DOCTORAL Three Essays on Game Theory Autor: José Carlos González Pimienta Directores: Luis Carlos Corchón Francesco De Sinopoli DEPARTAMENTO DE ECONOMÍA Getafe, Julio del 2007 Three Essays on Game Theory Carlos Gonzalez´ Pimienta To my parents Contents List of Figures iii Acknowledgments 1 Chapter 1. Introduction 3 Chapter 2. Conditions for Equivalence Between Sequentiality and Subgame Perfection 5 2.1. Introduction 5 2.2. Notation and Terminology 7 2.3. Definitions 9 2.4. Results 12 2.5. Examples 24 2.6. Appendix: Notation and Terminology 26 Chapter 3. Undominated (and) Perfect Equilibria in Poisson Games 29 3.1. Introduction 29 3.2. Preliminaries 31 3.3. Dominated Strategies 34 3.4. Perfection 42 3.5. Undominated Perfect Equilibria 51 Chapter 4. Generic Determinacy of Nash Equilibrium in Network Formation Games 57 4.1. Introduction 57 4.2. Preliminaries 59 i ii CONTENTS 4.3. An Example 62 4.4. The Result 64 4.5. Remarks 66 4.6. Appendix: Proof of Theorem 4.1 70 Bibliography 73 List of Figures 2.1 Notation and terminology of finite extensive games with perfect recall 8 2.2 Extensive form where no information set is avoidable. 11 2.3 Extensive form where no information set is avoidable in its minimal subform. 12 2.4 Example of the use of the algorithm contained in the proof of Proposition 2.1 to generate a game where SPE(Γ) = SQE(Γ). 14 6 2.5 Selten’s horse. An example of the use of the algorithm contained in the proof of proposition 2.1 to generate a game where SPE(Γ) = SQE(Γ). -
Online Learning, Regret Minimization, Minimax Optimality, and Correlated
High level Last time we discussed notion of Nash equilibrium. Static concept: set of prob. Distributions (p,q,…) such that Online Learning, Regret Minimization, nobody has any incentive to deviate. Minimax Optimality, and Correlated But doesn’t talk about how system would get there. Troubling that even finding one can be hard in large games. Equilibrium What if agents adapt (learn) in ways that are well-motivated in terms of their own rewards? What can we say about the system then? Avrim Blum High level Consider the following setting… Today: Each morning, you need to pick Online learning guarantees that are achievable when acting one of N possible routes to drive in a changing and unpredictable environment. to work. Robots R Us What happens when two players in a zero-sum game both But traffic is different each day. 32 min use such strategies? Not clear a priori which will be best. When you get there you find out how Approach minimax optimality. long your route took. (And maybe Gives alternative proof of minimax theorem. others too or maybe not.) What happens in a general-sum game? Is there a strategy for picking routes so that in the Approaches (the set of) correlated equilibria. long run, whatever the sequence of traffic patterns has been, you’ve done nearly as well as the best fixed route in hindsight? (In expectation, over internal randomness in the algorithm) Yes. “No-regret” algorithms for repeated decisions “No-regret” algorithms for repeated decisions A bit more generally: Algorithm has N options. World chooses cost vector. -
Correlated Equilibrium
Announcements Ø Minbiao’s office hour will be changed to Thursday 1-2 pm, starting from next week, at Rice Hall 442 1 CS6501: Topics in Learning and Game Theory (Fall 2019) Introduction to Game Theory (II) Instructor: Haifeng Xu Outline Ø Correlated and Coarse Correlated Equilibrium Ø Zero-Sum Games Ø GANs and Equilibrium Analysis 3 Recap: Normal-Form Games Ø � players, denoted by set � = {1, ⋯ , �} Ø Player � takes action �* ∈ �* Ø An outcome is the action profile � = (�., ⋯ , �/) • As a convention, �1* = (�., ⋯ , �*1., �*2., ⋯ , �/) denotes all actions excluding �* / ØPlayer � receives payoff �*(�) for any outcome � ∈ Π*5.�* • �* � = �*(�*, �1*) depends on other players’ actions Ø �* , �* *∈[/] are public knowledge ∗ ∗ ∗ A mixed strategy profile � = (�., ⋯ , �/) is a Nash equilibrium ∗ ∗ (NE) if for any �, �* is a best response to �1*. 4 NE Is Not the Only Solution Concept ØNE rests on two key assumptions 1. Players move simultaneously (so they cannot see others’ strategies before the move) 2. Players take actions independently ØLast lecture: sequential move results in different player behaviors • The corresponding game is called Stackelberg game and its equilibrium is called Strong Stackelberg equilibrium Today: we study what happens if players do not take actions independently but instead are “coordinated” by a central mediator Ø This results in the study of correlated equilibrium 5 An Illustrative Example B STOP GO A STOP (-3, -2) (-3, 0) GO (0, -2) (-100, -100) The Traffic Light Game Well, we did not see many crushes in reality… -
Sequential Preference Revelation in Incomplete Information Settings”
Online Appendix for “Sequential preference revelation in incomplete information settings” † James Schummer∗ and Rodrigo A. Velez May 6, 2019 1 Proof of Theorem 2 Theorem 2 is implied by the following result. Theorem. Let f be a strategy-proof, non-bossy SCF, and fix a reporting order Λ ∆(Π). Suppose that at least one of the following conditions holds. 2 1. The prior has Cartesian support (µ Cartesian) and Λ is deterministic. 2 M 2. The prior has symmetric Cartesian support (µ symm Cartesian) and f is weakly anonymous. 2 M − Then equilibria are preserved under deviations to truthful behavior: for any N (σ,β) SE Γ (Λ, f ), ,µ , 2 h U i (i) for each i N, τi is sequentially rational for i with respect to σ i and βi ; 2 − (ii) for each S N , there is a belief system such that β 0 ⊆ N ((σ S ,τS ),β 0) SE β 0(Λ, f ), ,µ . − 2 h U i Proof. Let f be strategy-proof and non-bossy, Λ ∆(Π), and µ Cartesian. Since the conditions of the two theorems are the same,2 we refer to2 arguments M ∗Department of Managerial Economics and Decision Sciences, Kellogg School of Manage- ment, Northwestern University, Evanston IL 60208; [email protected]. †Department of Economics, Texas A&M University, College Station, TX 77843; [email protected]. 1 made in the proof of Theorem 1. In particular all numbered equations refer- enced below appear in the paper. N Fix an equilibrium (σ,β) SE Γ (Λ, f ), ,µ . -
Evolutionary Game Theory: a Renaissance
games Review Evolutionary Game Theory: A Renaissance Jonathan Newton ID Institute of Economic Research, Kyoto University, Kyoto 606-8501, Japan; [email protected] Received: 23 April 2018; Accepted: 15 May 2018; Published: 24 May 2018 Abstract: Economic agents are not always rational or farsighted and can make decisions according to simple behavioral rules that vary according to situation and can be studied using the tools of evolutionary game theory. Furthermore, such behavioral rules are themselves subject to evolutionary forces. Paying particular attention to the work of young researchers, this essay surveys the progress made over the last decade towards understanding these phenomena, and discusses open research topics of importance to economics and the broader social sciences. Keywords: evolution; game theory; dynamics; agency; assortativity; culture; distributed systems JEL Classification: C73 Table of contents 1 Introduction p. 2 Shadow of Nash Equilibrium Renaissance Structure of the Survey · · 2 Agency—Who Makes Decisions? p. 3 Methodology Implications Evolution of Collective Agency Links between Individual & · · · Collective Agency 3 Assortativity—With Whom Does Interaction Occur? p. 10 Assortativity & Preferences Evolution of Assortativity Generalized Matching Conditional · · · Dissociation Network Formation · 4 Evolution of Behavior p. 17 Traits Conventions—Culture in Society Culture in Individuals Culture in Individuals · · · & Society 5 Economic Applications p. 29 Macroeconomics, Market Selection & Finance Industrial Organization · 6 The Evolutionary Nash Program p. 30 Recontracting & Nash Demand Games TU Matching NTU Matching Bargaining Solutions & · · · Coordination Games 7 Behavioral Dynamics p. 36 Reinforcement Learning Imitation Best Experienced Payoff Dynamics Best & Better Response · · · Continuous Strategy Sets Completely Uncoupled · · 8 General Methodology p. 44 Perturbed Dynamics Further Stability Results Further Convergence Results Distributed · · · control Software and Simulations · 9 Empirics p.