Breeding Strawberries (Fragaria X Ananassa Duch) for Adaptability To

Total Page:16

File Type:pdf, Size:1020Kb

Breeding Strawberries (Fragaria X Ananassa Duch) for Adaptability To Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1981 Breeding strawberries (Fragaria x ananassa Duch) for adaptability to machine harvest and cytogenetical studies of parent and progeny Atef Mohamed Ibrahim Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics Commons Recommended Citation Ibrahim, Atef Mohamed, "Breeding strawberries (Fragaria x ananassa Duch) for adaptability to machine harvest and cytogenetical studies of parent and progeny " (1981). Retrospective Theses and Dissertations. 7430. https://lib.dr.iastate.edu/rtd/7430 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. If copyrighted materials were deleted you will find a target note listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again -beginning below the first row and continuing on until complete. 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy. Universi^ MicnSllms International 8209130 Ibrahim, Atef Mohamed BREEDING STRAWBERRIES (FRAGARIA X ANANASSA DUCH.) FOR ADAPTABILITY TO MACHINE HARVEST AND CYTOGENETICAL STUDIES OF PARENT AND PROGENY Iowa Stale University PH.D. 1981 University Microfilms I ntsrnâtionâi 300 N Zeeb Road, Ann Arbor. MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V . 1. Glossy photographs or pages 2. Colored illustrations, paper or print 3. Photographs with dark background 4. Illustrations are poor copy 5. Pages with black marks, not original copy 6. Print shows through as there is text on both sides of page 7. Indistinct, broken or small print on several pages 8. Print exceeds margin requirements 9. Tightly bound copy with print lost in spine 10. Computer printout pages with indistinct print 11. Page(8) lacking when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curiing and wrinkled pages 15. Other University Microfilms International Breeding strawberries (Fragaria x ananassa Duch.) for adaptability to machine harvest and cytogenetical studies of parent and progeny Atef Mohamed Ibrahim A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major: Horticulture Approved: Signature was redacted for privacy. In Charge of Màjor WoA Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Ames, Iowa 1981 i i TABLE OF CONTENTS page INTRODUCTION 1 PART I. BREEDING STRAWBERRIES {Fragaria X ananassa Duch.) 3 FOR ADAPTABILITY TO MACHINE HARVEST INTRODUCTION 4 LITERATURE REVIEW 7 MATERIALS AND METHODS 21 Materials 21 Methods 21 Crossing procedures 21 Evaluation of the progenies and their parental clones 24 Statistical analysis 26 RESULTS 31 Evaluation of the Progenies and Their Parental Clones with 31 Regard to Yield (Number of Berries per Plant), Firmness (gms.), and Capping Force (gms.) Yield (number of berries per plant) 31 Berry firmness (gms) 36 Capping force (the force required for berry detachment 40 in gms) Changes of the Characters during the Four Harvesting Periods 43 Percent of ripe berries per harvest (concentrated ripening) 43 Berry firmness (gms) 51 Capping force (force required for berry detachment (gms)) 59 Relationships of the Characters during the Four Harvesting 66 Periods Yield and concentrated ripening traits 66 Firmness and easy cap traits 76 DISCUSSION 80 SUMMARY AND CONCLUSIONS 89 ii i BIBLIOGRAPHY 92 PART II. CYTOGENETICAL STUDIES OF PARENT AND PROGENY 99 INTRODUCTION 100 LITERATURE REVIEW 102 MATERIALS AND METHODS 111 Materials 111 Methods 111 Meiosis 111 Mitosis 112 RESULTS 115 DISCUSSION 129 SUMMARY AND CONCLUSIONS 134 BIBLIOGRAPHY 136 CONCLUSIONS 140 ACKNOWLEDGEMENTS 143 APPENDIX 144 1 INTRODUCTION Strawberry breeding has received the consideration of horticulturists for the last century to meet the needs of consumers. Each year, many new cultivars appear on the market, but from these only a small number persist, and the majority are discarded. Changes in labor supply and other economic factors indicated that me­ chanical harvesting of strawberries is needed to maintain or increase yield without excessive increase in production costs. Hence, for rationaliza­ tion of strawberry harvest, the construction of picking machines has been initiated. To utilize mechanical adaptation, however, it is necessary to have adapted strawberry cultivars. Cultivars should display high total usable yields, concentration of fruit maturity, firm berries, and good cap­ ping quality, which are important clonal traits related to mechanical har­ vesting adaptability. The purposes of this study were to evaluate critically the chosen parental clones and their progenies with regard to yielding ability, con­ centration of fruit maturity, firmness of the fruit and easy cap traits, and, also, to determine the effects of parental matings on these characters as related to mechanical harvesting. Moreover, the inheritance of these traits attracted the attention of many workers since the early 1900s. Cytological studies, as well, captured the interest of other groups of investigators. Many attempts have oeen made to investigate the cytological behavior of the chromosomes and the type of chromosome pairing during meiosis. However, a few attempts were made to study the nature of mitosis of octoploid cultivated strawberries. 2 Other objectives of the present study were to compare the variation in the chromosomal association during meiosis between the progenies and their parental clones, and to investigate the nature of any association be­ tween the bivalents during diakinesis and metaphase I. Also, mitosis was investigated in root tip cells of all genotypes studied to determine whether specific chromosomes could be identified. 3 PART I. BREEDING STRAWBERRIES {Fragaria x ananassa Duch.) FOR ADAPTABILITY TO MACHINE HARVEST 4 INTRODUCTION The octoploid cultivated strawberry (rragaria X ananassa Duch.) is considered a hybrid derived from crosses between F. virginiana Ducn. x F. chiioensis (L.) Duch. (74, 82, 83, 93, 97). Because of their delicate flavor, dessert quality, and nutritional value, strawberries are grown throughout the world and considered one of the very important small fruits crops. It should be available to consumers at low cost. Unfortunately, inflation in recent years, as well as the increasing cost of manual labor for picking strawberries, caused a rapid rise in production costs. The risk for the future is that strawberries could be considered a luxury crop and out of reach of the majority of consumers, unless some modifications in production can receive immediate attention. One of the most important problems in strawberry programs is how to eliminate increasing production costs year after year. Mechanical harvest­ ing is a possible solution for stabilizing the strawberry industry. In re­ cent years, invention and construction of picking machines in many differ­ ent locations in the world have been activated. Berries can be stripped from plants by several devices including the use of scoops, tines, air blast or vacuum force, and subsequent use of conveyors (1, 5, 6, 11, 12, 13, 14, 39, 40, 45, 46, 47, 79, 91). Therefore, it is clear now that me­ chanical harvesting of strawberries is both possible and feasible. In
Recommended publications
  • Characteristics of Fragaria Vesca Yield Parameters and Anthocyanin Accumulation Under Water Deficit Stress
    plants Article Characteristics of Fragaria vesca Yield Parameters and Anthocyanin Accumulation under Water Deficit Stress Rytis Rugienius 1,* , Vidmantas Bendokas 1 , Tadeusas Siksnianas 1, Vidmantas Stanys 1, Audrius Sasnauskas 1 and Vaiva Kazanaviciute 2 1 Lithuanian Research Centre for Agriculture and Forestry, Department of Orchard Plant Genetics and Biotechnology, Institute of Horticulture, LT-54333 Babtai, Lithuania; [email protected] (V.B.); [email protected] (T.S.); [email protected] (V.S.); [email protected] (A.S.) 2 Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania; [email protected] * Correspondence: [email protected]; Tel.: +370-37-555253 Abstract: Plants exposed to drought stress conditions often increase the synthesis of anthocyanins—natural plant pigments and antioxidants. However, water deficit (WD) often causes significant yield loss. The aim of our study was to evaluate the productivity as well as the anthocyanin content and composition of berries from cultivated Fragaria vesca “Rojan” and hybrid No. 17 plants (seedlings) grown under WD. The plants were grown in an unheated greenhouse and fully irrigated (control) or irrigated at 50% and 25%. The number of berries per plant and the berry weight were evaluated every 4 days. The anthocyanin content and composition of berries were evaluated with the same periodicity using HPLC. The effect of WD on the yield parameters of two evaluated F. vesca genotypes differed depending on the harvest time. The cumulative yield of plants under WD was not less Citation: Rugienius, R.; Bendokas, V.; Siksnianas, T.; Stanys, V.; Sasnauskas, than that of the control plants for 20–24 days after the start of the experiment.
    [Show full text]
  • Kim E. Hummer USDA ARS National Clonal Germplasm Repository 33447 Peoria Road Corvallis, Oregon 97333-2521 U.S.A
    A new species of Fragaria (Rosaceae) from Oregon Kim E. Hummer USDA ARS National Clonal Germplasm Repository 33447 Peoria Road Corvallis, Oregon 97333-2521 U.S.A. [email protected] ABSTRACT Fragaria cascadensis K.E. Hummer, sp. nov. is endemic to the western high Cascade Mountain Range in Oregon, United States. This deca- ploid species can be distinguished by adaxial leaf hairs, distal tooth of the terminal leaflet always smaller than adjacent teeth, and comma- shaped achenes. Its known range is in the western Cascade Mountains from the Columbia River in the north, to the vicinity of Crater Lake in the south, at elevations of 1,000 to 3,800 m, in sandy-clay loams of volcanic origin, in forest clearings and open meadows. RESUMEN Fragaria cascadensis K.E. Hummer, sp. nov. es endémica de la Cordillera de las Cascadas en Oregón, Estados Unidos. Esta especie deca- ploide puede diferenciarse por los pelos del envés de las hojas, diente distal del foliolo terminal siempre más pequeño que los dientes adya- centes, y los aquenios en forma de coma. Su rango conocido va del oeste de la Cordillera de las Cascadas desde el río Columbia en el norte, a las proximidades del Crater Lake en el sur, a elevaciones de 1,000 a 3,800 m, en margas arenoso-calcáreas de origen volcánico, en claros de bosque y en parados abiertos. DESCRIPTION Fragaria cascadensis Hummer, sp. nov. (Figs. 1–3). TYPE: U.S.A. OREGON. Lane Co.: US NFDR 5897, southern exposure, dis- turbed area at forest edge, along roadside ditch, altitude 1433 m, with Pseudotsuga menziesii, 8 Aug 2011, K.E.
    [Show full text]
  • Needham Hawii 0085O 10368.Pdf
    BREADFRUIT (ARTOCARPUS ALTILIS): THE IMPACT OF ENVIRONMENT ON NUTRITIONAL COMPOSITION AND IMPLICATIONS FOR HAWAIʻI COMMUNITIES A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL PLANT AND SOIL SCIENCES JULY 2019 By Amber Mei Lan Waiokeola Needham Thesis Committee: Noa Lincoln, Chairperson Rajesh Jha Theodore Radovich Alyssa Cho Keywords: Artocarpus altilis; Breadfruit; consumer survey; environmental variables; human nutrition 1 Acknowledgements He wahi leo mahalo kēia i kuʻu ʻohana, ke akua, nā ʻaumākua a me kuʻu kūpuna ʻāina e mālama mau mai ka wā hūpēkole ʻānō. Eia nō au, he pūkoʻa kani ʻāina, he māmakakaua o kēia paio hoʻoluluhi nei o ka hele kulanui. He kauoha mana loa kēia e hōʻike ai i ka ʻike, ka ikaika, ke akamai, ka maopopo pono, ka ʻike pāpālua, a me ka mana o ka Hawaiʻi; pēlā nō ā i ke aloha ʻāina hope loa. Paʻi ka lima! Paʻi ka lima! Paʻi ka lima! Eō! Many thanks to my committee members for their patience and willingness to guide me through this research. A special thank-you is due to Dr. Jha for his nurturing nature and allowing me use of his laboratory for my analyses. Each farmer and his/her family, who have participated openly in this study and in other breadfruit studies that have directly supported this research, are greatly appreciated as ultimately this compilation of time and energy has been for and with them. An incredible amount of support was given to me and this research by members of the Indigenous Cropping Systems Lab, the Jha Lab, Native Hawaiian Student Services, Maui Nui Botanical Gardens, Dr.
    [Show full text]
  • Potentilla Spp.)-The Five Finger Weeds 1
    r Intriguing World of Weeds iiiiiiiiiaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Cinquefoils (Potentilla spp.)-The Five Finger Weeds 1 LARRY W. MITICH2 INTRODUCTION In 1753 Linneaus named the genus Potentilla in his Species Plantarum (4). The common name five finger is m cd frequently for this group of plants ( 18, 29). The genus, in the rose family (Rosaceae), is composed of about 500 north temperate species (50 in North America, 75 Euro­ pean species) of mostly boreal herbs and shrubs. Indeed, Potentilla extends far into arctic regions (22, 29). How­ ever, a few species are south temperate. And although less common, some species are also found in alpine and high 11,ountain regions of the tropics and South America; P. anserinoides Lehm. is a New Zealand native (27). Cinquefoil, which means five leaves, is an old herb, full of mystery and magic, which matches the charm Rough cinquefoil, Potentilla norvegica L. of its name. The plant protects its frag­ ile blooms in bad weather by contract­ ing the leaves so that they curve over the liver in humans (29). It was prescribed as a tea or in and shelter the flower (11). Cinquefoil wine for diarrhea, leukorrhea, kidney stones, arthritis, was credited with supernatural powers, cramps, and reducing fever (22). However, in recent times and was an essential ingredient in love divination. Accord­ the roots are being used for a gargle and mouthwash (11). ing to Alice Elizabeth Bacon, frogs liked to sit on this In America the outer root bark of creeping cinquefoil (P. plant-"the toad will be much under Sage, frogs will be in reptans L.) is used to stop nosebleeds.
    [Show full text]
  • Diversity of Volatile Patterns in Sixteen Fragaria Vesca L. Accessions in Comparison to Cultivars of Fragaria ×Ananassa D
    Journal of Applied Botany and Food Quality 86, 37 - 46 (2013), DOI:10.5073/JABFQ.2013.086.006 1Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Quedlinburg, Germany 2Hansabred GmbH & Co. KG, Dresden, Germany Diversity of volatile patterns in sixteen Fragaria vesca L. accessions in comparison to cultivars of Fragaria ×ananassa D. Ulrich1*, K. Olbricht 2 (Received April 4, 2013) Summary of the latter was described as much more sweetish-aromatic than those of the F. ×ananassa cultivars but with some astringent and Fragaria vesca is the most distributed wild species in the genus bitter impressions (ULRICH et al., 2007). F. vesca is characterized by Fragaria. Due to this biogeography, a high diversity is to expect. outstanding flowery notes like violet and acacia. But especially in During two harvest seasons, sixteen accessions from different lo- the white mutant F. vesca f. alba (Ehrh.) Staudt, these impressions cations from the most eastern habitat at Lake Baikal in Siberia, from sometimes were described by the testers with negative statements Middle and Southern Europe and Northern Europe with Scandinavia like over-aromatic and perfume-like. By gas chromatography- and Iceland were investigated as well as two of the three described olfactometry (GCO) experiments, the flowery impressions were North American subspecies and three F. vesca cultivars. Five very assigned to the content of the aromatic ester methyl anthranilate distinct European F. ×ananassa cultivars were chosen to serve as a whereas the herbaceous impressions are caused by a high content comparison. Beside brix value and acid contents, the aroma patterns of terpenoids.
    [Show full text]
  • Strawberries
    STRAWBERRIES JUNE-BEARING ( MAIN CROP ) Cultivar Comments Benicia Fruit have excellent flavor compared to other available June-bearing strawberries, particularly during early spring. The berries maintain their size well over the course of the season instead of diminishing in size toward the end. The plants demonstrate moderate to high plant vigor efficiency. Chandler Large, firm fruit with very good flavor. Good for fresh market and for freezing. Plant produces numerous runners. Douglas Large to very large, firm fruit of excellent flavor and very high sugar content. A heavy producer, 'Douglas' produces a much heavier yield of high quality berries than other early varieties. Well suited to coastal and Southern California. Lassen Medium to large berry of good quality. Crops produced in spring and fall. A good variety for Southern California. Plant is somewhat tolerant of saline soils. Mojave Plants have moderate to high plant vigor, especially in the early parts of the season. Berries are delicious and moderately firm. Sequoia Exceptionally large, soft berry of outstanding quality has won many taste tests. Fruit begins to ripen in January and continues for many months. Preforms like an everbearer in mild climates. Vigorous plants produce many runners and are somewhat tolerant of alkaline soils. Tioga Medium to large, firm berry with very good flavor. Yield, size, and quality of fruit is better than that of 'Lassen'. Heavy producer. Fruit is an excellent shipper and good for fresh eating or for preserves, pies, or freezing. EVERBEARING Cultivar Comments Brighton Showy flowers and big, beautiful berries make this a good variety for hanging baskets.
    [Show full text]
  • Chapter 1 Definitions and Classifications for Fruit and Vegetables
    Chapter 1 Definitions and classifications for fruit and vegetables In the broadest sense, the botani- Botanical and culinary cal term vegetable refers to any plant, definitions edible or not, including trees, bushes, vines and vascular plants, and Botanical definitions distinguishes plant material from ani- Broadly, the botanical term fruit refers mal material and from inorganic to the mature ovary of a plant, matter. There are two slightly different including its seeds, covering and botanical definitions for the term any closely connected tissue, without vegetable as it relates to food. any consideration of whether these According to one, a vegetable is a are edible. As related to food, the plant cultivated for its edible part(s); IT botanical term fruit refers to the edible M according to the other, a vegetable is part of a plant that consists of the the edible part(s) of a plant, such as seeds and surrounding tissues. This the stems and stalk (celery), root includes fleshy fruits (such as blue- (carrot), tuber (potato), bulb (onion), berries, cantaloupe, poach, pumpkin, leaves (spinach, lettuce), flower (globe tomato) and dry fruits, where the artichoke), fruit (apple, cucumber, ripened ovary wall becomes papery, pumpkin, strawberries, tomato) or leathery, or woody as with cereal seeds (beans, peas). The latter grains, pulses (mature beans and definition includes fruits as a subset of peas) and nuts. vegetables. Definition of fruit and vegetables applicable in epidemiological studies, Fruit and vegetables Edible plant foods excluding
    [Show full text]
  • Effect of the Strawberry Genotype, Cultivation and Processing on the Fra a 1 Allergen Content
    nutrients Article Effect of the Strawberry Genotype, Cultivation and Processing on the Fra a 1 Allergen Content Elisabeth Kurze 1, Vanessa Kock 1, Roberto Lo Scalzo 2, Klaus Olbricht 3,4 and Wilfried Schwab 1,* ID 1 Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str.1, 85354 Freising, Germany; [email protected] (E.K.); [email protected] (V.K.) 2 Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Unità di ricerca per i processi dell’industria agroalimentare (CREA-IAA), via Venezian 26, 20133 Milan, Italy; [email protected] 3 Hansabred GmbH & Co. KG, Radeburger Landstr. 12, 01108 Dresden, Germany; [email protected] 4 Humboldt-Universität zu Berlin, Albrecht Daniel Thaer-Institute, 10099 Berlin, Germany * Correspondence: [email protected]; Tel.: +49-8161-712912 Received: 16 May 2018; Accepted: 28 June 2018; Published: 2 July 2018 Abstract: Birch pollen allergic patients show cross-reactivity to vegetables and fruits, including strawberries (Fragaria × ananassa). The objective of this study was to quantify the level of the Fra a 1 protein, a Bet v 1-homologous protein in strawberry fruits by a newly developed ELISA, and determine the effect of genotype, cultivation and food processing on the allergen amount. An indirect competitive ELISA using a specific polyclonal anti-Fra a 1.02 antibody was established and revealed high variability in Fra a 1 levels within 20 different genotypes ranging from 0.67 to 3.97 µg/g fresh weight. Mature fruits of red-, white- and yellow-fruited strawberry cultivars showed similar Fra a 1 concentrations.
    [Show full text]
  • Fragaria Virginiana – Wild Strawberry
    Friends of the Arboretum Native Plant Sale Fragaria virginiana – Wild Strawberry COMMON NAME: Wild Strawberry SCIENTIFIC NAME: Fragaria virginiana - the name comes from Latin fraga referring to the fragrance of the fruit. FLOWER: white, 5-parted, clusters of blossoms on a stem BLOOMING PERIOD: April to June SIZE: low plant, 8 – 10 inches tall BEHAVIOR: Spreads by above ground runners (stolons). The leaves are compound with three sharply toothed leaflets. SITE REQUIREMENTS: Tolerant of a wide variety of soil moisture conditions, moist to dry. It grows in full sun or light shade. Look for wild strawberries on woodland edges, savannas, old fields, wet or dry prairies, rocky openings, roadsides, or along railroads. NATURAL RANGE: From eastern Canada west to Albert, south to Georgia, Tennessee and Oklahoma. It is found throughout Wisconsin. SPECIAL FEATURES: This plant provides a good ground cover for problem areas. The delicious, edible fruit is quickly taken by chipmunks and birds. Indigenous peoples used the fruits for food and medicine for various stomach complaints. Leaves were also dried for use in tea to alleviate a variety of ailments. Of special note is that the cultivated strawberry was developed in France from a cross between this plant and a similar wild strawberry from Chile. SUGGESTED CARE: Water well to establish and then little care is needed. COMPANION PLANTS: There are many companion plants because of the wide variety of habitats where wild strawberry occurs. In disturbed woods: arrow leaved aster, Pennsylvania sedge, common cinquefoil, black and choke cherry, black and white oak, blackberry. In richer woodlands: white ash, basswood, red oak, elm, wild geranium, Virginia creeper, starry Solomon’s plume.
    [Show full text]
  • Sex-Allocation Plasticity in Hermaphrodites of Sexually Dimorphic Fragaria Virginiana (Rosaceae)
    231 Sex-allocation plasticity in hermaphrodites of sexually dimorphic Fragaria virginiana (Rosaceae) Eric J. Bishop, Rachel B. Spigler, and Tia-Lynn Ashman Abstract: Sex-allocation plasticity is thought to play an important role in the evolution of separate sexes in plants. Ac- cordingly, much attention has been paid to environmentally induced variation in fruit and seed production in sexually di- morphic species, but we know little about whether this variation arises as a direct response to environmental variation or is instead an indirect consequence of changes in plant size. In this study, we characterize sex-allocation plasticity across a resource gradient for several reproductive traits in hermaphrodites of gyno(sub)dioecious Fragaria virginiana Duch. We find significant plasticity, on average, for flower number, proportion fruit set, ovule number, proportion seed set, and run- ner number in response to resource variation. Plasticity of most traits examined tended to be at least partially independent of variation in plant size, suggesting that it is not simply an indirect consequence of plant allometry. Moreover, we find genetic variation for plasticity of key reproductive traits. Comparisons of relative plasticities among traits reveal that F. virginiana hermaphrodites are more likely to adjust female investment via changes in fruit and seed set than ovule num- ber, and most likely to adjust male investment via flower number rather than anther number or pollen per anther, although there is genotypic variation for plasticity in pollen per anther. Evidence of within-population variation can logically be ex- tended to suggest that variation in hermaphrodite sex-expression seen among natural populations of F.
    [Show full text]
  • Evaluation of a Mobile Steam Applicator for Soil Disinfestation In
    HORTSCIENCE 49(12):1542–1549. 2014. treatment have been explored (Horowitz and Taylorson, 1983). Using prior knowledge on steam, a tractor-drawn steam boiler was Evaluation of a Mobile Steam engineered to inject steam 35 cm into raised strawberry beds for a threshold minimum Applicator for Soil Disinfestation temperature of 70 °C for 30 min, a level of heating sufficient to control pathogens and in California Strawberry most weed seeds (Baker, 1957). Part of the novelty of this technological advance was the Steven A. Fennimore1 physical mixing of steam with soil supported Department of Plant Sciences, University of California, Davis, 1636 East by a separate study showing that soil agita- Alisal Street, Salinas, CA 93905 tion during steaming can improve efficiency (Miller et al., 2014). Frank N. Martin Adoption of steam disinfestation of field USDA–ARS, 1636 East Alisal Street, Salinas, CA 93905 soils has been hindered by fuel consumption, labor, and application time required (Samtani Thomas C. Miller et al., 2012). Despite steam providing weed Department of Plant Sciences, University of California, Davis, 1636 East control, pathogen suppression, and yields similar to fumigated strawberries, Samtani Alisal Street, Salinas, CA 93905 et al. (2011, 2012) found that the higher Janet C. Broome equipment and fuel costs reduced net returns Driscoll Strawberry Associates, 151 Silliman Way, Watsonville, CA 95076 to the grower choosing steam over fumiga- tion. Also, with treatment taking 49 h·ha–1 Nathan Dorn with current technologies, the treatment was too slow to be considered a practical alterna- Reiter Affiliated Companies, 11 Quail Run Ct, Salinas, CA 93907 tive to fumigation.
    [Show full text]
  • 7.98 25 Simply Juice Every Day! Points Selected Varieties Per Lb
    breakfast savings Hansen’s Apple Juice 64 oz. $ Cherimoya 2 for 4 This tropical fruit has the flavors of bananas, pineapple and strawberries in one delicious package! Sara Lee Grown in Mexico. Deluxe Bagels 15 or Oroweat points per lb. lb. English 5.99 20 Muffins save 1.00 lb. Selected varieties points 6 count Green, Red or Cineraria 10 Black Seedless In 6 Inch $ Wrapped Pot for points Grapes 7.99 2 5 Grown in Chile. 2.49 lb. save 50¢ lb. 5 Lb. Bag organic Organic Carrots Sweet Pineapple Grown in the U.S. Kellogg’s Kids’ Cereal, Enjoy a sweet taste Quaker Life or Cap ’n Crunch of the tropics with 10 5-Stem Royal Lilies Selected varieties this luscious golden $ Beautiful bunches 10.5 oz. to 20 oz. pineapple. Grown for points 2.49 ea. of color. in Costa Rica. 2 5 $ save 2.98 on 2 save 1.00 ea. 6.99 4 for 10 Nature Valley or Quaker Chewy Granola Bars Selected varieties 6 oz. to 8.9 oz. $ Exclusively at our stores! 4 for 10 Fresh Pacific Northwest Fresh Wild Caught Texas Steelhead Trout Gulf Shrimp FOLD 10 Fillets Raw • Jumbo Size lb. 16 to 25 count lb. Farm-raised 7.99 11.99 points FOLD Fresh seafood availability subject to weather and fishing conditions. While supplies last. Aunt Jemima Syrup or Mix Selected varieties 24 oz. to 32 oz. $ Save up to $3.01 lb. 4 for 10 2 steaks or more lb. 7.98 25 Simply Juice every day! points Selected varieties per lb.
    [Show full text]