Manual Guidance of Veterinary Clinical Practice and Laboratory Table of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MINIATURIZED TECHNIQUES for Imvic TESTS1 DANIEL Y
328 ]. Milk Food Technol., Vol. 35, No. 6 (1972) MINIATURIZED TECHNIQUES FOR IMViC TESTS1 DANIEL Y. c. FuNG AND RICHARD D. MILLER Department of Microbiology The Pennsylvania State University University Park 16802 ( Received for publication January 24, 1972) ABsTRACT Indole test Sterile tryptone broth ( Difco) was introduced into the A miniaturized method for performing IMViC tests is pro wells ( 0.2 ml per well) of a series of Microtiter plates; the Downloaded from http://meridian.allenpress.com/jfp/article-pdf/35/6/328/2399137/0022-2747-35_6_328.pdf by guest on 27 September 2021 posed. Twenty-four gram-negative bacterial species and plates were then inoculated, covered, and incubated at 37 C. strains were tested by use of miniaturized and conventional At intervals of 8, 12, and 24 hr, Microtiter plates were re methods; the results were comparable. The miniaturized moved from the incubator for testing. To detect indole pro method effects savingG of time, space, materials, and effort. duction, 2 drops of Kovac reagent were transferred by a The advantages and applications of microbiological Pasteur pipette to each well of the Microtiter plate. A red layer formed on top of the broth in the well indicated a posi~ tests using small volumes of media have been dis tive reaction. Parallel conventional tests for indole produc cussed in detail by Hartman (6). The combination tion, as well as other IMViC tests, were performed according of small volumes of media in Microtiter plates and to the Difm Manual (3), in each species and strain in four multiple inoculation techniques has been used by replicates. -
Prevalence of Urinary Tract Infection and Antibiotic Resistance Pattern in Pregnant Women, Najran Region, Saudi Arabia
Vol. 13(26), pp. 407-413, August, 2019 DOI: 10.5897/AJMR2019.9084 Article Number: E3F64FA61643 ISSN: 1996-0808 Copyright ©2019 Author(s) retain the copyright of this article African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper Prevalence of urinary tract infection and antibiotic resistance pattern in pregnant women, Najran region, Saudi Arabia Ali Mohamed Alshabi1*, Majed Saeed Alshahrani2, Saad Ahmed Alkahtani1 and Mohammad Shabib Akhtar1 1Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia. 2Department of Obstetics and Gyneocology, Faculty of Medicine, Najran University, Najran, Saudi Arabia. Received 25 February, 2019; Accepted August 5, 2019 Urinary Tract Infection (UTI) is one of the commonest infectious disease in pregnancy, and in pregnancy we have very limited number of antibiotics to treat the UTI. This study was conducted on 151 patients who attended the gynecology clinic during the study period. Nineteen UTI proven cases of UTI were studied for prevalence of microorganism and sensitivity pattern against different antibiotics. Among the bacteria isolated, Escherichia coli (73.68%) and Staphylococcus aureus (10.52%) were the most prevalent Gram negative and Gram positive bacteria respectively. To know the resistance pattern of microorganism we used commercially available discs of different antibiotics. Gram negative bacteria showed more resistance as compared to Gram positive one. It is observed that the most effective antibiotic for Gram negative isolates is Ceftriaxone (87.5%), followed by Amoxicillin + Clavulanic acid (81.25%), Amikacin (75%), Cefuroxime (75%), Cefixime (68.75%) and Mezlocillin (62.5%). For the Gram positive bacteria, Ceftriaxone, Amikacin and Amoxicillin + Clavulanic acid were the most effective antimicrobials (100%). -
Fecal Examination for Parasites 2015 Country Living Expo Classes #108 & #208
Fecal Examination for Parasites 2015 Country Living Expo Classes #108 & #208 Tim Cuchna, DVM Northwest Veterinary Clinic Stanwood (360) 629-4571 [email protected] www.nwvetstanwood.com Fecal Examination for Parasites Today’s schedule – Sessions 1 & 2 1st part discussing fecal exam & microscopes 2nd part Lab – three areas Set-up your samples Demonstration fecals Last 15 minutes clean-up and last minute questions; done by 11:15 Fecal Examination for Parasites Today’s Topics How does fecal flotation work? Introduction to fecal parasite identification Parasite egg characteristics. Handout Parasites of concern Microscope basics and my preferences Microscopic exam Treatment plan based on simple flotation fecal exam Demonstration of Fecalyzer set-up How does Fecal Flotation work? Based on specific gravity – the ratio of the density of a substance (parasite eggs) compared to a standard (water) Water has a specific gravity(sp. gr.) of 1.00. Parasite eggs range from 1.05 – 1.20 sp.gr. Fecal flotation solution – approximately 1.18 – 1.27 sp. gr. Fecal debris usually is greater than 1.30 sp. gr. Fecasol solution – 1.2 – 1.25 sp. gr. Fecal Examination for Parasites Important topics NOT covered today Parasite treatment protocols Parasite management Other parasites such as external and blood-borne Fecal Examination for Parasites My Plan Parasite Identification 1. Animal ID (name, species, age & condition of animal) 2. Characteristics of parasite eggs, primarily looking for eggs in fecal samples a) Size - microns (µm)/micrometer – 1 µm=1/1000mm = 1/1millionth of a meter. Copy paper thickness = 100 microns (µm) b) Shape – Round, oval, pear, triangular shapes c) Shell thickness – Thin to thick d) Caps (operculum) One or both ends; smooth or protruding Parasites of Concern Nematodes – Roundworms Protozoa – Coccidia, Giardia, Toxoplasma Trematodes – Flukes – Minor concern in W. -
Study Sheet #1
Pathogens 1. Acinetobacter a. A. calcoaceticus i. Animals, Man – Opportunistic Infections 2. Actinobacillus a. A. actinomycetemocomitans i. Animals – Opportunistic Infection ii. Man – Opportunistic Infection b. A. equuli i. Equine – Actinobacillosis c. A. lignieresii i. Bovine – Actinobacillosis d. A. pleuropneumoniae i. Porcine – Pleuropneumonia 3. Aeromonas a. A. hydrophilia i. Animals, Man – Opportunistic Infection 4. Alcaligenes a. Alcaligenes species i. Animals, Man – Opportunistic Infection 5. Bacillus a. B. anthracis i. Animals, Man – Anthrax b. B. cereus i. Man – Food Poisoning 6. Bordetella a. B. bronchiseptica i. Canine – Tracheobronchitis (Kennel Cough) ii. Porcine – Atrophic Rhinitis b. B. pertussis i. Man – Pertussis (Whooping Cough) 7. Brucella a. B. abortus i. Bovine –Abortion, Orchitis b. B. canis i. Canine - Abortion, Orchitis c. B. melitensis i. Ovine - Abortion, Orchitis d. B. ovis i. Ovine - Abortion, Orchitis e. B. suis i. Porcine - Abortion, Orchitis 8. Burkholderia a. B. mallei i. Equine – Glanders b. B. pseudomallei 9. Campylobacter a. C. fetus fetus i. Ovine – Epizootic abortion b. C. fetus veneralis i. Bovine – Campylobacteriosis c. C. jejuni i. Man – Enteritis d. i. Animal, Man – Melioidosis 10. Clostridium a. C. botulimum i. Animals, Man – Botulism b. C. chauvoei i. Bovine – Blackleg c. C. perfringens i. Ovine – Enterotoxemia ii. Man – Gas Gangrene d. C. tetani i. Animals, Man – Tetanus 11. Corynebacterium a. C. diphtheriae i. Man – Diphtheria b. C. psuedotuberculosis i. Ovine – Caseous lymphadenitis c. C. renale i. Bovine – Contagious pyelonephritis 12. Dermatophilus a. D. congolensis i. Animals, Man – Dermatophilosis 13. Erysipelothrix a. E. rhusiopathiae i. Porcine – Erysipelas ii. Man – Erysipeloid 14. Enterococcus species a. Opportunistic pathogens of humans and domestic animals b. -
Bacterial Skin Infections
BACTERIAL SKIN INFECTIONS SPEAKER: DR LUIZ ALBERTO BOMJARDIM PÔRTO DERMATOLOGIST BRAZIL MRSA INFECTIONS • Concept: Methicillin- resistant Staphylococcus aureus • Epidemiology: Gradual increase of resistance. • Nosocomial MRSA risk factors: Hospitalization, ICU, invasive procedures, previous antibiotic therapy, health professionals, diabetes mellitus, EV drugs, immunosuppression and chronic diseases. MRSA INFECTIONS • Community MARSA risk factors: Children, EV drugs, indigenous, homosexual men, military, prisoners and athletes. • Microorganisms more virulent by genetic characteristics. MRSA INFECTIONS • Clinic caracteristics: -Abscess, cellulitis, folliculitis, impetigo, infected wounds, external otitis, paronychia and colonization of the skin in cases of atopic dermatitis. - Increased morbidity. • Propedeutics: Culture blood, tissue or secretion. MRSA INFECTIONS • Treatment: - Pathology-specific treatment. - Prefer non-beta-lactam antibiotics, such as: clindamycin, sulfamethoxazole- trimethoprim and tetracyclines. - On suspicion of MARSA infection, start empirical antibiotics and stagger specific antibiotics by culture with antibiograma. MRSA INFECTIONS • Treatment: - Decolonization: systemic antibiotic therapy, topical 2% mupirocin, personal hygiene with antiseptic or antimicrobial solutions (iodine-povidine, chlorhexidine or triclosan). MRSA INFECTIONS • Prevention: - Avoid skin-to-skin contact and share personal belongings / clothing. - Hand washing. - Use of alcohol gels. - Cover wounds. - Isolation contact of MARSA carriers. - Early -
Disease Transmission
Rudolph Virchow Wild Pig Diseases: Father of modern Current Issues and pathology Potential Concerns First used the term “zoonosis” S. W. Jack, DVM, MS, PhD Mississippi State University College of Veterinary Medicine Strong advocate of Pathobiology/Population Medicine “one medicine” Tenet of population medicine: Disease Transmission Most new problems are introduced •Source Accidental vs. malicious •Susceptible host 75% of emerging diseases in humans •Means of transmission are ZOONOTIC 80% zoonotic diseases involve wildlife 1 Source of the agent Susceptible Host Diseased animals Emigration (natural) Means Offal & other waste Importation (transportation) Means Vectors / fomites / environment Stressors (Population density, weather, REMEMBER : humans ARE animals ! ! + nutrition, other disease, etc) Disease Impact Means of Transmission Wildlife Direct contact Means Vectors / fomites / environment Public Agriculture/ Health Environment 2 Diseases of Swine More than Zoonotic Impact Abscesses Eclampsia Porcine Cytomegalovirus Infection (PCMV) Muscle Tearing Rabies Tetanus Bovine (Porcine) Spongiform Encephalopathy (BSE) Actinobacillosis Electrocution Japanese B Porcine Dermatitis and Nephropathy Syndrome (PDNS) Mycoplasma Arthritis Rectal Stricture Encephalitis Virus (JE) Bovine Viral Diarrhoea Virus (BVD) Actinobacillus Pleuropneumonia (App) Encephalomyocarditis Thin Sow Syndrome Porcine Enteropathy Mycotoxicosis Reproduction Jaw and Snout Brucellosis Agalactia Endometritis Deviation Porcine Epidemic Diarrhoea (PED) Navel Bleeding Retroviruses -
New Methods for Pathogens : a Revlew Daniel Y
234 NEW METHODS FOR PATHOGENS : A REVLEW DANIEL Y. C. FUNG The Pennsylvania State University Intr ductioii Interests in new methods for identification of bacterial pathogens have increased greatly in recent years due to the awareness of, the need for, and the potential of rapid methods and automation in Micro- biology. In 1971 a report by the U .So National Institute of General Medical Sciences presented the status of mechanization and automation in the clinical laboratory; autcnnation in microbiology was one of the topics reviewed (Kinney, 19-71). Richardson (1972) summttrized the developments of automation in the dairy Laboratories. These topics have been discussed in detail in the International Symposium on Rapid Methods and Automation in Microbiology first held L~IStockholm, Sweden, 1973, and again in Cambridge University, England, 1976. Another symposium was held in Kiel, Germny, 1974 with the title Automation of Microbio1ogr;ical Food Analysis. TheIn proceedings of the First International Symposium were published in two volumes : Automation in Microbiology and Innrmnolom (Heden and Illeni, 1975a) and New Approaches to the Identification of Microorganisms (Heden and Illeni, 1975b). The purpose of this article is to summarize the highlights of some automated microbiological tests and rapid methods relevant to the food industry. Hopefully some of these methods could be adapted and used routinely by the food industry. New Approaches and Automation in Microbioloa Generally the approach to developing new nethods for pathogens involved either a search for new ideas and related instrument develop- ment or improvement of existing bacteriological methods. The impetus for the development of new ideas and instruments mbly comes from clinical needs for rapid detection of organisms and antibiotic sensitivity testing. -
Small Animal Intestinal Parasites
Small Animal Intestinal Parasites Parasite infections are commonly encountered in veterinary medicine and are often a source of zoonotic disease. Zoonosis is transmission of a disease from an animal to a human. This PowerPage covers the most commonly encountered parasites in small animal medicine and discusses treatments for these parasites. It includes mostly small intestinal parasites but also covers Trematodes, which are more common in large animals. Nematodes Diagnosed via a fecal flotation with zinc centrifugation (gold standard) Roundworms: • Most common roundworm in dogs and cats is Toxocara canis • Causes the zoonotic disease Ocular Larval Migrans • Treated with piperazine, pyrantel, or fenbendazole • Fecal-oral, trans-placental infection most common • Live in the small intestine Hookworms: • Most common species are Ancylostoma caninum and Uncinaria stenocephala • Causes the zoonotic disease Cutaneous Larval Migrans, which occurs via skin penetration (often seen in children who have been barefoot in larval-infected dirt); in percutaneous infection, the larvae migrate through the skin to the lung where they molt and are swallowed and passed into the small intestine • Treated with fenbendazole, pyrantel • Can cause hemorrhagic severe anemia (especially in young puppies) • Fecal-oral, transmammary (common in puppies), percutaneous infections Whipworms: • Trichuris vulpis is the whipworm • Fecal-oral transmission • Severe infection may lead to hyperkalemia and hyponatremia (similar to what is seen in Addison’s cases) • Trichuris vulpis is the whipworm • Large intestinal parasite • Eggs have bipolar plugs on the ends • Treated with fenbendazole, may be prevented with Interceptor (milbemycin) Cestodes Tapeworms: • Dipylidium caninum is the most common tapeworm in dogs and cats and requires a flea as the intermediate host; the flea is usually inadvertently swallowed during grooming • Echinococcus granulosus and Taenia spp. -
Heather D. Stockdale Walden
HEATHER D. STOCKDALE WALDEN College of Veterinary Medicine, Department of Comparative, Diagnostic and Population Medicine, PO Box 110123, Gainesville, Florida | 352-294-4125 | [email protected] EDUCATION Auburn University Ph.D. Biomedical Sciences 2008 Area of Concentration: Parasitology Dissertation: “Biological characterization of Tritrichomonas foetus of bovine and feline origin” Appalachian State University M.S. Biology 2004 Area of Concentration: Genetics Thesis: “Differences in male courtship behavior of Drosophila melanogaster: Sex, flies and videotape” University of Kentucky B.S. Biology 1999 AWARDS Zoetis Distinguished Veterinary Teacher Award 2016 Intervet/AAVP Outstanding Graduate Student 2008 Byrd Dunn (SSP) Award for Best Graduate Student Presentation 2008 Phi Zeta – Auburn University, Best Graduate Student Presentation 2007 Bayer/AAVP Best Graduate Student Presentation 2007 Auburn University Graduate Assistantship 2004-2008 PROFESSIONAL EXPERIENCE University of Florida College of Veterinary Medicine Assistant Professor of Parasitology 2015 – present Department of Infectious Diseases and Pathology Gainesville, Florida University of Florida College of Veterinary Medicine Research Assistant Professor of Parasitology 2010 –2015 Department of Infectious Diseases and Pathology Gainesville, Florida University of Florida College of Veterinary Medicine Biological Scientist 2009 – 2010 Department of Infectious Diseases and Pathology Gainesville, Florida University of Florida College of Veterinary Medicine Biological Scientist 2008 -
The Power of Homeopathy in Animal Diseases
Balaji Deekshitulu P V, IJAR, 2019; 4:27 Review Article IJAR (2019) 4:27 International Journal of Animal Research (ISSN:2575-7822) The Power of Homeopathy in Animal Diseases Dr Balaji Deekshitulu P V Homeopathy Physician and Counseling Psychologist, Sri Balaji Homeopathy & Personal Counseling Center, Tirupati, A.P, India.cell:8885391722 / 7207255557. ABSTRACT Homeopathy a medicine (remedy) is selected which would pro- *Correspondence to Author: duce in a healthy body the same symptoms found in the sick Dr Balaji Deekshitulu P V animal (“like cures like”). This substance is selected from herbs, Homeopathy Physician and Coun- minerals, and natural compounds which are then diluted beyond seling Psychologist, Sri Balaji the point of possible toxicity.This review article explains that Ho- Homeopathy & Personal Coun- meopathy Treat met is best treatment in animals also. seling Center, Tirupati, A.P, India. cell:8885391722 / 7207255557. Keywords: Diseases, Homeopathy, Animals How to cite this article: Balaji Deekshitulu P V, The Power of Homeopathy in Animal Diseases. International Journal of Animal Re- search, 2019; 4:27. eSciPub LLC, Houston, TX USA. Website: https://escipub.com/ https://escipub.com/international-journal-of-animal-research/ 1 Balaji Deekshitulu P V, IJAR, 2019; 4:27 Introduction • Belladonna: Sudden and high fever, redness, pain, dilated pupils and panting. Homeopathy has been found one of the best holistic and safest treatments for many people. • Borax: For fear of thunderstorms and This has been found true for animals and plants fireworks as well. Veterinary homeopathy is a safe, • Bryonia: Colic, all symptoms worse with effective and powerful form of medicine. Most motion and better by resting or staying veterinarians choose homeopathy due to the perfectly still, thirst for large amounts of chronic and recurring nature of many ailments water, vomiting bile after eating, in animals. -
Serological Patterns of Actinobacillus Pleuropneumoniae, Mycoplasma
Wallgren et al. Acta Vet Scand (2016) 58:71 DOI 10.1186/s13028-016-0252-1 Acta Veterinaria Scandinavica RESEARCH Open Access Serological patterns of Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae, Pasteurella multocida and Streptococcus suis in pig herds affected by pleuritis Per Wallgren1,2*, Erik Nörregård3, Benedicta Molander3, Maria Persson1 and Carl‑Johan Ehlorsson3 Abstract Background: Respiratory illness is traditionally regarded as the disease of the growing pig, and has historically mainly been associated to bacterial infections with focus on Mycoplasma hyopneumoniae and Actinobacillus pleuro- pneumoniae. These bacteria still are of great importance, but continuously increasing herd sizes have complicated the scenario and the influence of secondary invaders may have been increased. The aim of this study was to evaluate the presence of A. pleuropneumoniae and M. hyopneumoniae, as well as that of the secondary invaders Pasteurella multocida and Streptococcus suis by serology in four pig herds (A–D) using age segregated rearing systems with high incidences of pleuritic lesions at slaughter. Results: Pleuritic lesions registered at slaughter ranged from 20.5 to 33.1 % in the four herds. In herd A, the levels of serum antibodies to A. pleuropneumoniae exceeded A450 > 1.5, but not to any other microbe searched for. The seroconversion took place early during the fattening period. Similar levels of serum antibodies to A. pleuropneumoniae were also recorded in herd B, with a subsequent increase in levels of antibodies to P. multocida. Pigs seroconverted to both agents during the early phase of the fattening period. In herd C, pigs seroconverted to P. multocida during the early phase of the fattening period and thereafter to A. -
Source : Microbiology by Pelczar, Prescott Et Al Microbiology, Microbiology of Water
Source : Microbiology by Pelczar, Prescott et al Microbiology, Microbiology of water Water - very essential factor needed by man (used for cooking, drinking, etc.). -open and widely accessible, making it susceptible to contamination by chemicals and bacterial pathogens. -once contaminated, it would be harmful for human consumption. Water Borne Diseases Water-borne diseases are any illness caused by drinking water contaminated by human or animal faeces, which contain pathogenic microorganisms. The germs in the faeces can cause the diseases by even slight contact and transfer. Waterborne microbial pathogens Microbes in water include: – Bacteria – Virus – Protozoa – Helmiths – Spirochete – Rickettsia – Algae A few microbes (pathogens) are capable of causing disease, and may be transmitted by water. Waterborne pathogens Salmonella typhi Escherichia coli Vibrio cholera Pseudomonas aeruginosa Shigella spp. Cryptosporidium Giardia lamblia Norwalkvirus Cryptosporidium parvum Bacterial diseases transmitted through drinking water Disease Causal bacterial agent Cholera Vibrio cholerae Gastroenteritis caused Vibrio parahaemolyticus by vibrios Typhoid fever and Salmonella typhi, Salmonella paratyphi, other serious Salmonella typhimurium salmonellosis Bacillary dysentery Shigella dysenteriae, Shigella flexneri or shigellosis Shigella boydii, Shigella sonnei Acute diarrheas and gastroenteritis Escherichia coli Viral Sources of Waterborne Disease Hepatitis A: inflammation and necrosis of liver Norwalk-type virus: acute gastroenteritis Rotaviruses: