Shining a Light on Species Delimitation in the Tree Genus Engelhardia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shining a Light on Species Delimitation in the Tree Genus Engelhardia
Molecular Phylogenetics and Evolution 152 (2020) 106918 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Shining a light on species delimitation in the tree genus Engelhardia T Leschenault ex Blume (Juglandaceae) Can-Yu Zhanga,i, Shook Ling Lowb, Yi-Gang Songc,e, Nurainasd, Gregor Kozlowskie, Truong Van Dof, Lang Lia,g,j, Shi-Shun Zhoug, Yun-Hong Tang,j, Guan-Long Caoa,i, Zhuo Zhouh, ⁎ ⁎ Hong-Hu Menga,g, , Jie Lia,g,j, a Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650023, China b CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China c Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China d Department of Biology, Faculty of Math. & Nat. Sci. Andalas University, Padang 25163, West Sumatra, Indonesia e Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland f Vietnam National Museum of Nature, Vietnam Academy of Science & Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam g Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw 05282, Myanmar h CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China i University of Chinese Academy of Sciences, Beijing 100049, China j Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China ARTICLE INFO ABSTRACT Keywords: Enhanced efficacy in species delimitation is critically important in biology given the pending biodiversity crisis Species delimitation under global warming and anthropogenic activity. -
Isolation and Characterization of 12 Polymorphic Microsatellite Markers in Engelhardia Roxburghiana (Juglandaceae)
Zhang et. al.·Silvae Genetica (2014) 63-3, 109-112 SINGH, G. and S. R. ASOKAN (1984): Economic and man- VARSHNEY, R. K., A. GRANER and M. E. SORRELLS (2005): agement aspects of harvesting and processing resin in Genic microsatellite markers: features and applications, India. Center for Management in Agriculture, Indian Trends in Biotechnology, 23: 48–55. Institute of Management, Ahmedabad. VENDRAMIN, G. G., P. LELLILR ROSSI and M. MORGANTE SINGH, H., A. SAKLANI and B. LAL (1990): Ethnobotanical (1996): A set of primers for the amplification of 20 observations on some Gymnosperms of Garhwal chloroplast microsatellites in Pinaceae. Molecular Ecol- Himalaya, Uttar Pradesh, India. Economic Botany, 44: ogy, 5: 595– 598. 349–354. VOS, P., R. HOGERS, M. BLEEKER, M. REIJANS, T. VAN DE SINGH, V. and S. KUMAR (2004): Seed quality as affected by LEE, M. HORNES, A. FRIJTERS, J. POT, J. PELEMAN, mid cone diameter in Pinus roxburghii Sarg. Indian M. KUIPER and M. ZABEAU (1995): AFLP: a new tech- Forester, 130(7): 757–761. nique for DNA fingerprinting. Nucleic Acids Research, SINGHAL, R. M., P. KUMAR and S. D. SHARMA (1987): Study 23(21): 4407–4414. of the humus forms in some ecosystems of Chakrata for- WILLIAMS, J. G. K., A. R. KUBELIK, K. J. LIVAK, J. A. RAFAL- est (Dehradun) U. P., India. Indian Forester, 113(2): SKI and S. V. TINGEY (1990): DNA polymorphisms ampli- 117–126. fied by arbitrary primers are useful as genetic markers. SINHA, B. (2002): Introduction of the European pines in Nucleic Acids Research, 18: 6531–6535. the Himalyas: A brief note. -
Dil Limbu.Pmd
Nepal Journal of Science and Technology Vol. 13, No. 2 (2012) 87-96 A Checklist of Angiospermic Flora of Tinjure-Milke-Jaljale, Eastern Nepal Dilkumar Limbu1, Madan Koirala2 and Zhanhuan Shang3 1Central Campus of Technology Tribhuvan University, Hattisar, Dharan 2Central Department of Environmental Science Tribhuvan University, Kirtipur, Kathmandu 3International Centre for Tibetan Plateau Ecosystem Management Lanzhou University, China e-mail:[email protected] Abstract Tinjure–Milke–Jaljale (TMJ) area, the largest Rhododendron arboreum forest in the world, an emerging tourist area and located North-East part of Nepal. A total of 326 species belonging to 83 families and 219 genera of angiospermic plants have been documented from this area. The largest families are Ericaceae (36 species) and Asteraceae (22 genera). Similarly, the largest and dominant genus was Rhododendron (26 species) in the area. There were 178 herbs, 67 shrubs, 62 trees, 15 climbers and other 4 species of sub-alpine and temperate plants. The paper has attempted to list the plants with their habits and habitats. Key words: alpine, angiospermic flora, conservation, rhododendron Tinjure-Milke-Jaljale Introduction determines overall biodiversity and development The area of Tinjure-Milke-Jaljale (TMJ) falls under the activities. With the increasing altitude, temperature middle Himalaya ranging from 1700 m asl to 5000 m asl, is decreased and consequently different climatic and geographically lies between 2706’57" to 27030’28" zones within a sort vertical distance are found. The north latitude and 87019’46" to 87038’14" east precipitation varies from 1000 to 2400 mm, and the 2 longitude. It covers an area of more than 585 km of average is about 1650 mm over the TMJ region. -
Wingnut (Juglandaceae)
83 Wingnut (Juglandaceae) as a new generic host for Pityophthorus juglandis (Coleoptera: Curculionidae) and the thousand cankers disease pathogen, Geosmithia morbida (Ascomycota: Hypocreales) Stacy M. Hishinuma, Paul L. Dallara, Mohammad A. Yaghmour, Marcelo M. Zerillo, Corwin M. Parker, Tatiana V. Roubtsova, Tivonne L. Nguyen, Ned A. Tisserat, Richard M. Bostock, Mary L. Flint, Steven J. Seybold1 Abstract—The walnut twig beetle (WTB), Pityophthorus juglandis Blackman (Coleoptera: Curculionidae), vectors a fungus, Geosmithia morbida Kolařík, Freeland, Utley, and Tisserat (Ascomycota: Hypocreales), which colonises and kills the phloem of walnut and butternut trees, Juglans Linnaeus (Juglandaceae). Over the past two decades, this condition, known as thousand cankers disease (TCD), has led to the widespread mortality of Juglans species in the United States of America. Recently the beetle and pathogen were discovered on several Juglans species in northern Italy. Little is known about the extra-generic extent of host acceptability and suitability for the WTB. We report the occurrence of both the WTB and G. morbida in three species of wingnut, Pterocarya fraxinifolia Spach, Pterocarya rhoifolia Siebold and Zuccarini, and Pterocarya stenoptera de Candolle (Juglandaceae) growing in the United States Department of Agriculture-Agricultural Research Service, National Clonal Germplasm Repository collection in northern California (NCGR) and in the Los Angeles County Arboretum and Botanic Garden in southern California, United States of America. In two instances (once in P. stenoptera and once in P. fraxinifolia) teneral (i.e., brood) adult WTB emerged and were collected more than four months after infested branch sections had been collected in the field. Koch’s postulates were satisfied with an isolate of G. -
Analysis of Phylogenetic Relationships in the Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2)
Analysis of Phylogenetic Relationships in The Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2) Zhongzhong Guo Tarim University Qiang Jin Tarim University Zhenkun Zhao Tarim University Wenjun Yu Tarim University Gen Li Tarim University Yunjiang Cheng Tarim University Cuiyun Wu Tarim University rui Zhang ( [email protected] ) Tarim University https://orcid.org/0000-0002-4360-5179 Research Article Keywords: Base sequence, Evolution, Juglandaceae, Ribosomal spacer, Secondary structure Posted Date: May 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-501634/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract This study aims to investigate the phylogenetic relationships within the Juglandaceae family based on the Internal Transcribed Spacer's primary sequence and secondary structures (ITS2). Comparative analysis of 51 Juglandaceae species was performed across most of the dened seven genera. The results showed that the ITS2 secondary structure's folding pattern was highly conserved and congruent with the eukaryote model. Firstly, Neighbor-joining (N.J.) analysis recognized two subfamilies: Platycaryoideae and Engelhardioideae. The Platycaryoideae included the Platycaryeae (Platycarya+ (Carya+ Annamocarya)) and Juglandeae (Juglans-(Cyclocarya + Pterocarya)). The Engelhardioideae composed the (Engelhardia+Oreomunnea+Alfaroa)). The Rhoiptelea genus was generally regarded as an outgroup when inferring the phylogeny of Juglandaceae. However, it is clustered into the Juglandaceae family and showed a close relationship with the Platycaryoideae subfamily. Secondly, the folded 3-helices and 4-helices secondary structure of ITS2 were founded in the Juglandaceae family. Therefore, these ITS2 structures could be used as formal evidence to analyze Juglandaceae's phylogeny relationship. -
Dive Rsity of E Piphytic Orchids and Host Tre Es
BIOTROPIA Vol. 22 No. 2, 2015: 120 - 128 DOI: 10.11598/btb.2015.22.2.450 DIVERSITY OF EPIPHYTIC ORCHIDS AND HOST TREES (PHOROPHYTES) IN SECONDARY FOREST OF COBAN TRISULA, MALANG RE GE NCY, E AST JAVA, INDONE SIA SITI NURFADILAH Purwodadi Botanic Garden – Indonesian Institute of Sciences, Jalan Surabaya-Malang Km. 65 Purwodadi , Pasuruan, E ast Java 67163 , Indonesia Received 19 December 2014/Accepted 18 November 2015 ABSTRACT Epiphytic orchids are an integral component of forest ecosystems that contribute to a high proportion of plant diversity. The aim of this study was to investigate the diversity of orchids and their host trees (phorophytes) in a secondary forest of Coban Trisula (the Trisula waterfall) of Bromo Tengger Semeru National Park in East Java Province, Indonesia. Two line transects were established.E ach transect was 150 m long and composed of fifteen 10 x 10 m plots, resulting in the total number of 30 sampling plots at the study site. The following data were recorded in each plot: species name and individual numbers of epiphytic orchids, species name and individual numbers of the phorophytes and vertical distribution of the orchids on the phorophyte. There were 15 epiphytic orchid species found from 13 genera in the secondary forest of Coban Trisula. Appendicula angustifolia was the most abundant epiphytic orchid species (Relative abundance = 52. 4%), followed by Trichotosia annulata (29 . 9%). All recorded orchids grew on 21 individuals from nine phorophyte species. Castanopsis javanica (mean = 589.5 individuals/tree) and E ngelhardia spicata (mean = 425. 67 orchid individuals/tree ) were phorophytes hosting the largest number of individual orchids, respectively. -
Diversity of Tree Communities in Mount Patuha Region, West Java
BIODIVERSITAS ISSN: 1412-033X (printed edition) Volume 11, Number 2, April 2010 ISSN: 2085-4722 (electronic) Pages: 75-81 DOI: 10.13057/biodiv/d110205 Diversity of tree communities in Mount Patuha region, West Java DECKY INDRAWAN JUNAEDI♥, ZAENAL MUTAQIEN♥♥ Bureau for Plant Conservation, Cibodas Botanic Gardens, Indonesian Institutes of Sciences (LIPI), Sindanglaya, Cianjur 43253, West Java, Indonesia, Tel./Fax.: +62-263-51223, email: [email protected]; [email protected] Manuscript received: 21 March 2009. Revision accepted: 30 June 2009. ABSTRACT Junaedi DI, Mutaqien Z (2010) Diversity of tree communities in Mount Patuha region, West Java. Biodiversitas 11: 75-81. Tree vegetation analysis was conducted in three locations of Mount Patuha region, i.e. Cimanggu Recreational Park, Mount Masigit Protected Forest, and Patengan Natural Reserve. Similarity of tree communities in those three areas was analyzed. Quadrant method was used to collect vegetation data. Morisita Similarity index was applied to measure the similarity of tree communities within three areas. The three areas were dominated by Castanopsis javanica A. DC., Lithocarpus pallidus (Blume) Rehder and Schima wallichii Choisy. The similarity tree communities were concluded from relatively high value of Similarity Index between three areas. Cimanggu RP, Mount Masigit and Patengan NR had high diversity of tree species. The existence of the forest in those three areas was needed to be sustained. The tree communities data was useful for further considerations of conservation area management around Mount Patuha. Key words: Mount Patuha, tree communities, plant ecology, remnant forest. INTRODUCTION stated that the conservation status of tropical mountain rainforests of West Java has reached threatened conditions. -
Diversity and Evolution of Rosids
Diversity and Evolution of Rosids . gourds, oaks, and violets. Cucurbitales • previously recognized group of 7 families (some N2 fixers) N2 fixing • palmate leaves, cucurbitoid teeth, clade imperfect flowers, parietal placentation Cucurbitaceae Datiscaceae Begoniaceae Cucurbitaceae - melons Mainly tropical and subtropical family of 118 genera, 845 species of herbaceous or woody vines with tendrils (modified inflorescences) Gurania in Panama Cucumis in Wisconsin Cucurbitaceae - melons • flowers unisexual and plants dioecious or monoecious Male flower • fusion of perianth (Asterid- like!); stamens are weird, female flower is epigynous Female flower Cucurbitaceae - melons Fruit is a berry with leathery rind = *pepo (pumpkin, melon, pickle, gourd) Female flower Cucurbitaceae - melons Note the many small male flowers and few female Echinocystis lobata flowers going into fruit and wild cucumber spiny pepo Cucurbitaceae - melons Sicyos angulata - bur cucumber Small “burred” cucumber or pickle-like fruits can be seen on bottom right *Fagales • core “Amentiferae” of Engler & Prantl and subclass “Hamamelidae” N2 fixing of Cronquist - wind pollinated clade • trees with unisexual flowers in aments/catkins • inferior G (2-3) • nut - bony 1-seeded *Fagales Nothofagaceae - southern beeches - are sister to all others Lord of the Rings scenery XXX fossils *Fagaceae - beeches • North Temperate family of 7 genera, 670 species (1/2 are oaks) • simple leaves and nut enclosed by subtending bracts Fagus - beech Castanea - chestnut Quercus - oak *Fagaceae - beeches -
Secred Area, Holly Sites, Tengger Tribe, East Java
Advances in Life Sciences 2019, 9(1): 1-6 DOI: 10.5923/j.als.20190901.01 Traditional Knowledge Sacred Area: Holly Sites (Pedanyangan) in Tengger Tribe of East Java, Indonesia Jati Batoro*, Luqman Hakim, Brian Rahardi Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, East Java, Indonesia Abstract This study aims to reveal the diversity of plant species, the existence of traditional conservation areas, perceptions, meanings and action (praxis) in tengger’s society, East Java. Holly's site (Danyang or petren) is a spiritual belief by the community, related to the point of view of trust, religion, and also the success raised by the groups. People believe the diversity of flora in traditional conservation areas is spiritually sacred whose existence is protected by customary rules. The relationship between local’s believe, religion, biodiversity, and environment is the local wisdom of the tengger tribe. The research method was conducted through free interviews, direct observations by surveys, and attending ceremonies of traditional rituals in traditional conservation holly sites, and worship sites or sanggar pamujan). It leads by traditional leaders called pandhita (shaman) and he is supporter called legen or wong sepuh, and also Tengger’s society. As a results of the study show that traditional rituals are still well and consistently carried out, especially in the Tengger tribe. While the diversity of plant species in the sacred area is very well maintained and respected. Traditional conservation is a combination of religious views and local beliefs, it turns out that it gets more respect than formal conservation. The diversity of plant species in the sacred area as traditional conservation includes 38 species from 33 genus and 24 families. -
Brassica Spp.) – 151
II.3. BRASSICA CROPS (BRASSICA SPP.) – 151 Chapter 3. Brassica crops (Brassica spp.) This chapter deals with the biology of Brassica species which comprise oilseed rape, turnip rape, mustards, cabbages and other oilseed crops. The chapter contains information for use during the risk/safety regulatory assessment of genetically engineered varieties intended to be grown in the environment (biosafety). It includes elements of taxonomy for a range of Brassica species, their centres of origin and distribution, reproductive biology, genetics, hybridisation and introgression, crop production, interactions with other organisms, pests and pathogens, breeding methods and biotechnological developments, and an annex on common pathogens and pests. The OECD gratefully acknowledges the contribution of Dr. R.K. Downey (Canada), the primary author, without whom this chapter could not have been written. The chapter was prepared by the OECD Working Group on the Harmonisation of Regulatory Oversight in Biotechnology, with Canada as the lead country. It updates and completes the original publication on the biology of Brassica napus issued in 1997, and was initially issued in December 2012. Data from USDA Foreign Agricultural Service and FAOSTAT have been updated. SAFETY ASSESSMENT OF TRANSGENIC ORGANISMS: OECD CONSENSUS DOCUMENTS, VOLUME 5 © OECD 2016 152 – II.3. BRASSICA CROPS (BRASSICA SPP.) Introduction The plants within the family Brassicaceae constitute one of the world’s most economically important plant groups. They range from noxious weeds to leaf and root vegetables to oilseed and condiment crops. The cole vegetables are perhaps the best known group. Indeed, the Brassica vegetables are a dietary staple in every part of the world with the possible exception of the tropics. -
2. ENGELHARDIA Leschenault Ex Blume, Bijdr. 10: 528. 1825. 黄杞属 Huang Qi Shu Pterilema Reinwardt
Flora of China 4: 278–280. 1999. 2. ENGELHARDIA Leschenault ex Blume, Bijdr. 10: 528. 1825. 黄杞属 huang qi shu Pterilema Reinwardt. Trees deciduous, semievergreen or evergreen, monoecious or rarely dioecious. Branchlets with solid pith. Terminal buds oblong, naked. Leaves even-pinnate, rarely odd-pinnate; leaflets 2–14, margin entire or serrate. Inflorescences lateral or terminal on old or new growth: male and female spikes in androgynous panicles or separate; male spikes solitary or clustered, pendulous; female spike many flowered, erect or recurved in fruit. Flowers anemophilous. Male flowers with a 3-lobed bract; bracteoles 2, rarely absent; sepals 1–4, rarely absent; stamens 3–15, anthers glabrous or pubescent. Female flowers subtended by an enlarged, 3-lobed bract; bracteoles 2, united, reduced to a low rim or forming a conspicuous, anterior prophyll, adnate to base of ovary; sepals 4, adnate to ovary, free at apex; style absent or elongate; stigmas carinal or commissural, 2-lobed, with 2 or 4 plumose branches, or short and 4- lobed. Fruiting spike elongate, pendulous. Fruit a 3-winged nutlet, (2–)4-chambered at base. Germination epigeal. About seven species: S and SE Asia, N India; four species (one endemic) in China. The number of species of Engelhardia is open to question: more than ten have been recognized in SE Asia. The taxonomy of the genus suffers from a lack of good specimens from throughout its range. 1a. Plants monoecious, semievergreen or evergreen; leaflet margin entire; inflorescences terminal on new growth; male flowers shortly stalked, receptacle orbicular, stamens (10–)12, enclosed in 4-hooded floral parts, anthers glabrous; female flowers stalked, style absent, stigmas carinal, short, 4-lobed; nutlets glabrous ..................................................................................................................................... -
Pydrojuglonglucoside Founts
Juglandaceae M. Jacobs Leyden) Juglandaceae represent a characteristic northern hemisphere family, in the New World going south to Central America (Mexico, Costa Rica, Guatemala, Panama, Cuba, Hispaniola and found S of the equator as fas as c. 30° S, absent from Africa, and overstepping the equator also in the Malaysian region where Engelhardia extends to Java and New Guinea. This distri- bution shows a remarkableresemblance with that of the Fagaceae-Castaneaewhichthough absent S of the equator in the Americas, occur in Africa in the Mediterranean part only, and though rather well represented as far as New Guinea are also absent in Australiaand the Pacific islands. A detail of this is noteworthy parallel that although both are well represented in the Himalayan region and the Indo-Chinese Peninsula of either no representative group is found in Ceylon and the Deccan Peninsula! Northwards the family extended much farther in Tertiary time and fossils are known from Siberia to 61° Sakhalin, E. N (where at present Juglans occurs to 51° N), also Alaska (pollen to grains), Greenland, and Spitsbergen. Several genera which are now confined East Asia or North America occurred in Europe from the Upper Cretaceous until the Pliocene but became gradually extinct there during the Pleistocene Ice Age. See also under Engelhardia. The 6 with 58 and Taxonomy. family comprises genera c. spp.. Platycarya Pterocarya are Asiatic, Alfaroa is American, while Engelhardia, Carya, and Juglans occur in both the Old ar| d the New World. As for the disputed monotypic genus Annamocarya CHEV. (synonyms: Caryojuglans KIRCHH., Juglandicarya REID & CHANDLER, Rhamphocarya KUANG), described ,RI 1941 from S.