Current Issue of Arnoldia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shining a Light on Species Delimitation in the Tree Genus Engelhardia
Molecular Phylogenetics and Evolution 152 (2020) 106918 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Shining a light on species delimitation in the tree genus Engelhardia T Leschenault ex Blume (Juglandaceae) Can-Yu Zhanga,i, Shook Ling Lowb, Yi-Gang Songc,e, Nurainasd, Gregor Kozlowskie, Truong Van Dof, Lang Lia,g,j, Shi-Shun Zhoug, Yun-Hong Tang,j, Guan-Long Caoa,i, Zhuo Zhouh, ⁎ ⁎ Hong-Hu Menga,g, , Jie Lia,g,j, a Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650023, China b CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China c Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China d Department of Biology, Faculty of Math. & Nat. Sci. Andalas University, Padang 25163, West Sumatra, Indonesia e Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland f Vietnam National Museum of Nature, Vietnam Academy of Science & Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam g Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw 05282, Myanmar h CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China i University of Chinese Academy of Sciences, Beijing 100049, China j Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China ARTICLE INFO ABSTRACT Keywords: Enhanced efficacy in species delimitation is critically important in biology given the pending biodiversity crisis Species delimitation under global warming and anthropogenic activity. -
Messinian Vegetation and Climate of the Intermontane Florina-Ptolemais
bioRxiv preprint doi: https://doi.org/10.1101/848747; this version posted November 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Messinian vegetation and climate of the intermontane Florina-Ptolemais-Servia Basin, 2 NW Greece inferred from palaeobotanical data: How well do plant fossils reflect past 3 environments? 4 5 Johannes M. Bouchal1*, Tuncay H. Güner2, Dimitrios Velitzelos3, Evangelos Velitzelos3, 6 Thomas Denk1 7 8 1Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, 10405 9 Stockholm, Sweden 10 2Faculty of Forestry, Department of Forest Botany, Istanbul University Cerrahpaşa, Istanbul, 11 Turkey 12 3National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, 13 Section of Historical Geology and Palaeontology, Greece 14 15 16 bioRxiv preprint doi: https://doi.org/10.1101/848747; this version posted November 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 17 The late Miocene is marked by pronounced environmental changes and the appearance of 18 strong temperature and precipitation seasonality. Although environmental heterogeneity is to 19 be expected during this time, it is challenging to reconstruct palaeoenvironments using plant 20 fossils. We investigated leaves and dispersed spores/pollen from 6.4–6 Ma strata in the 21 intermontane Florina-Ptolemais-Servia Basin (FPS) of NW Greece. -
Diplotaxis Multicarinata 285
Delgado & Mora Aguilar: A New Mexican Scarab Species, Diplotaxis multicarinata 285 DIPLOTAXIS MULTICARINATA (COLEOPTERA: SCARABAEIDAE), A NEW SPECIES FROM A RELICT FOREST IN OAXACA, MEXICO LEONARDO DELGADO AND EDER F. MORA-AGUILAR Instituto de Ecología, A. C., Carretera Antigua a Coatepec No. 351, 91070 Xalapa, Veracruz, México ABSTRACT A new species of scarab beetle, Diplotaxis multicarinata sp. nov., is described from a relict montane forest in the northeastern region of Oaxaca, Mexico. The new species belongs to the simplex species-group, and a new key to this group is presented in order to include the new species. Key Words: Taxonomy, key, scarab beetle, Melolonthinae RESUMEN Se describe una nueva especie de escarabajo, Diplotaxis multicarinata sp. nov., proveniente de un bosque relicto localizado en la región noreste del estado de Oaxaca, México. La nueva especie pertenece al grupo de especies simplex, presentándose una nueva clave de identifi- cación para separar a todas las especies de este grupo. Translation provided by the authors. The genus Diplotaxis Kirby includes 241 spe- de México, México City (CNIN), Colección Ento- cies ranging from Panama to Canada, with most mológica del Instituto de Ecología, A. C., Xalapa, species (76%) founded in Mexico; these species are México (IEXA), S. McCleve collection, Arizona, arranged in 38 species-groups, and 6 species are USA (SMCC), L. Delgado collection, Mexico City unassigned (McCleve 1993; Davidson & Davidson (LLDC), and E. Mora-Aguilar collection, Xalapa, 2006; Delgado 2011). The simplex species-group México (EMAC). of this genus includes 9 species, which are distrib- uted from eastern and southern Mexico to Gua- DIPLOTAXIS MULTICARINATA DELGADO AND MORA- temala, and in the Greater Antilles (Jamaica). -
Spatial Distribution and Historical Dynamics of Threatened Conifers of the Dalat Plateau, Vietnam
SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM A thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Arts By TRANG THI THU TRAN Dr. C. Mark Cowell, Thesis Supervisor MAY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM Presented by Trang Thi Thu Tran A candidate for the degree of Master of Arts of Geography And hereby certify that, in their opinion, it is worthy of acceptance. Professor C. Mark Cowell Professor Cuizhen (Susan) Wang Professor Mark Morgan ACKNOWLEDGEMENTS This research project would not have been possible without the support of many people. The author wishes to express gratitude to her supervisor, Prof. Dr. Mark Cowell who was abundantly helpful and offered invaluable assistance, support, and guidance. My heartfelt thanks also go to the members of supervisory committees, Assoc. Prof. Dr. Cuizhen (Susan) Wang and Prof. Mark Morgan without their knowledge and assistance this study would not have been successful. I also wish to thank the staff of the Vietnam Initiatives Group, particularly to Prof. Joseph Hobbs, Prof. Jerry Nelson, and Sang S. Kim for their encouragement and support through the duration of my studies. I also extend thanks to the Conservation Leadership Programme (aka BP Conservation Programme) and Rufford Small Grands for their financial support for the field work. Deepest gratitude is also due to Sub-Institute of Ecology Resources and Environmental Studies (SIERES) of the Institute of Tropical Biology (ITB) Vietnam, particularly to Prof. -
2019 IUCN SSC Confier SG Report
IUCN SSC Conifer Plant Specialist Group 2019 Report Martin Gardner Chad Husby C0-Chairs Mission statement Activities and results 2019 Martin Gardner (1) The Conifer Specialist Group helps promote Assess (2) Chad Husby the long-term survival of the world’s conifers Red List through rigorous conservation assessments, i. The reassessment of conifers is working Red List Authority Coordinator which help to guide conservation planning and towards the third global assessment of this (1) conservation action. Philip Thomas group. (KSR #1) Act Location/Affiliation Targets for the 2017-2020 quadrennium Conservation actions (1) Royal Botanic Garden Edinburgh, UK Assess (2) Fairchild Tropical Botanical Garden, Miami, i. The ex situ conifer conservation programme, Red List: complete Red List assessments of 50 Florida, US using a network of over 200 sites, is ongoing conifer species. and each year the network is increased to accommodate more conifer species. In some Number of members Act cases, a site may accommodate a single indi- 42 Conservation actions: (1) continue the ex situ conifer conservation programme in the UK; (2) vidual of a species or larger numbers; therefore, restore the forests of the threatened conifer it is difficult to specify the number of breeding Glyptostrobus pensilis in Lao PDR. populations. (KSR #25) ii. Restoration of conifer populations is very long-term and it takes many years to start this important process; therefore, it is much too early to ascertain any percentage of population increase. Forest restoration of the threatened conifer Glyptostrobus pensilis in Lao PDR is still at the nursery stage, but with some early exper- imental planting achieved. -
Effects of Environmental Changes on the Occurrence of Oreomunnea Mexicana (Juglandaceae) in a Biodiversity Hotspot Cloud Forest
Article Effects of Environmental Changes on the Occurrence of Oreomunnea mexicana (Juglandaceae) in a Biodiversity Hotspot Cloud Forest Cecilia Alfonso-Corrado 1, Francisco Naranjo-Luna 2, Ricardo Clark-Tapia 1,*, Jorge E. Campos 3, Octavio R. Rojas-Soto 4, María Delfina Luna-Krauletz 1 ID , Barbara Bodenhorn 5, Montserrat Gorgonio-Ramírez 1 and Nelly Pacheco-Cruz 3 1 Universidad de la Sierra Juárez, Avenida Universidad S/N, Ixtlán de Juárez, 68725 Oaxaca, Mexico; [email protected] (C.A.-C.); [email protected] (M.D.L.-K.); [email protected] (M.G.-R.) 2 Instituto Tecnológico Superior de Jesús Carranza, Prolongación Miguel Hidalgo 1519, Colonia Centro, Jesús Carranza, 96950 Veracruz, Mexico; [email protected] 3 Laboratorio de Bioquímica Molecular-Unidad de Biotecnología y Prototipos (UBIPRO), FES-Iztacala, UNAM, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz, 54090 Estado de México, Mexico; [email protected] (J.E.C.); [email protected] (N.P.-C.) 4 Laboratorio de Bioclimatología, Red de Biología Evolutiva, Instituto de Ecología A.C. (INECOL), Carretera antigua a Coatepec, 351, El Haya, Xalapa, 91070 Veracruz, Mexico; [email protected] 5 Division of Social Anthropology, University of Cambridge, Cambridge CB2 1TN, UK; [email protected] * Correspondence: [email protected]; Tel.: +52-951-553-6362 (ext. 600) Received: 29 June 2017; Accepted: 18 July 2017; Published: 26 July 2017 Abstract: The tropical montane cloud forests are recognized as one of the most biodiverse ecosystems. In spite of this, they are among the most threatened ecosystems in the world. This study integrates three ecological approaches generally studied separately: climate change scenery, ecological niche and population dynamics of Oreomunnea mexicana (an endangered and relict species), to understand how environmental change affects the population structure in the cloud forest that will allow its conservation. -
Isolation and Characterization of 12 Polymorphic Microsatellite Markers in Engelhardia Roxburghiana (Juglandaceae)
Zhang et. al.·Silvae Genetica (2014) 63-3, 109-112 SINGH, G. and S. R. ASOKAN (1984): Economic and man- VARSHNEY, R. K., A. GRANER and M. E. SORRELLS (2005): agement aspects of harvesting and processing resin in Genic microsatellite markers: features and applications, India. Center for Management in Agriculture, Indian Trends in Biotechnology, 23: 48–55. Institute of Management, Ahmedabad. VENDRAMIN, G. G., P. LELLILR ROSSI and M. MORGANTE SINGH, H., A. SAKLANI and B. LAL (1990): Ethnobotanical (1996): A set of primers for the amplification of 20 observations on some Gymnosperms of Garhwal chloroplast microsatellites in Pinaceae. Molecular Ecol- Himalaya, Uttar Pradesh, India. Economic Botany, 44: ogy, 5: 595– 598. 349–354. VOS, P., R. HOGERS, M. BLEEKER, M. REIJANS, T. VAN DE SINGH, V. and S. KUMAR (2004): Seed quality as affected by LEE, M. HORNES, A. FRIJTERS, J. POT, J. PELEMAN, mid cone diameter in Pinus roxburghii Sarg. Indian M. KUIPER and M. ZABEAU (1995): AFLP: a new tech- Forester, 130(7): 757–761. nique for DNA fingerprinting. Nucleic Acids Research, SINGHAL, R. M., P. KUMAR and S. D. SHARMA (1987): Study 23(21): 4407–4414. of the humus forms in some ecosystems of Chakrata for- WILLIAMS, J. G. K., A. R. KUBELIK, K. J. LIVAK, J. A. RAFAL- est (Dehradun) U. P., India. Indian Forester, 113(2): SKI and S. V. TINGEY (1990): DNA polymorphisms ampli- 117–126. fied by arbitrary primers are useful as genetic markers. SINHA, B. (2002): Introduction of the European pines in Nucleic Acids Research, 18: 6531–6535. the Himalyas: A brief note. -
Richard Chinn Environmental Training, Inc. Info
Scientific Name Common Name Region 6 Habit Scientific Name Common Name Region 6 Habit Abies balsamea FIR,BALSAM FACW NT Amaranthus californicus AMARANTH,CALIFORNIA NI ANF Abutilon theophrasti VELVET-LEAF NI AIF Amaranthus crassipes AMARANTH,TROPICAL FAC+ AIF Acacia greggii ACACIA,CATCLAW UPL NST Amaranthus greggii AMARANTH,GREGGIS FAC ANF Acacia smallii HUISACHE FACU NTS Amaranthus obcordatus AMARANTH,TRANS PECOS NI ANF Acalypha rhomboidea COPPER-LEAF,COMMON UPL* ANF Amaranthus palmeri AMARANTH,PALMER'S FACU- ANF Acalypha virginica MERCURY,THREE-SEEDED UPL* ANF Amaranthus retroflexus AMARANTH,RED-ROOT FACU- ANF Acer negundo BOX-ELDER FACW- NT Amaranthus rudis AMARANTH,TALL FAC ANF Acer rubrum MAPLE,DRUMMOND RED FACW NT Amaranthus spinosus AMARANTH,SPINY FACU- ANF Acer rubrum MAPLE,TRIDENT RED NI NT Amaranthus tuberculatus AMARANTH,ROUGH-FRUIT NI ANF Acer rubrum MAPLE,RED FAC NT Ambrosia artemisiifolia RAGWEED,ANNUAL FACU- ANF Acer saccharinum MAPLE,SILVER FAC NT Ambrosia grayi BURSAGE,WOOLLY-LEAF FACW PNF Acer saccharum MAPLE,SUGAR UPL NT Ambrosia psilostachya RAGWEED,NAKED-SPIKE FAC- PNF Achillea millefolium YARROW,COMMON FACU PNF Ambrosia trifida RAGWEED,GREAT FAC ANF Acorus calamus SWEETFLAG OBL PIEF Amelanchier alnifolia SERVICE-BERRY,SASKATOON FAC- NS Adiantum capillus-veneris FERN,SOUTHERN MAIDEN-HAIR FACW+ PNF3 Amelanchier arborea SERVICE-BERRY,DOWNY FACU NT Adiantum pedatum FERN,NORTHERN MAIDEN-HAIR FAC PNF3 Amianthium muscaetoxicum FLYPOISON FAC PNF Adiantum tricholepis FERN,HAIRY MAIDEN-HAIR FAC PNF3 Ammannia auriculata AMMANNIA,RED-STEM -
Q U a R T E R L Y N E W S L E T T E R December 2009 Volume 7 Number 2 of 4
LOUISIANA NATURAL AREAS REGISTRY Q u a r t e r l y N e w s l e t t e r December 2009 Volume 7 Number 2 of 4 Working with landowners towards conservation of Louisiana’s ecologically sensitive lands http//www.Louisiana.gov/experience/natural heritage/naturalareasregistry/ Can you name this flower? See Page 6 for answer. NATURAL AREAS UPDATE They are considered together here due to their floristic similarity Amity Bass has joined the and/or similarity in management needs.) Louisiana Natural Cypress‐Tupelo‐Blackgum Swamps throughout the natural range are Heritage Program staff as forested alluvial swamps growing on intermittently exposed soils our new Community most commonly along rivers and streams but also occurring in back Ecologist. She is a native swamp depressions and swales. The soils are inundated or saturated of West Monroe in by surface water or ground water on a nearly permanent basis northeast Louisiana. throughout the growing season except during periods of extreme Amity received her drought. However, even deepwater swamps, with almost Bachelors in Biology from continuous flooding, experience seasonal fluctuations in water levels the University of (LNHP 1986‐2004). Baldcypress swamps generally occur on mucks Louisiana at Monroe and clays, and also silts and sands with underlying clay layers (ULM) in 2005 and her (Alfisols, Entisols, Histosols, and Inceptisols) (Conner and Buford undergraduate work 1998). focused on the nesting ecology of turtles on sandbars and Cypress‐Tupelo‐Blackgum swamps have relatively low floristic herpetofaunal (study of reptiles and amphibians) surveys on state diversity. Taxodium distichum (baldcypress) and Nyssa aquatica wildlife management areas. -
Redalyc.New Records of Mining Moths from the Iberian Peninsula From
SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Lastuvka, A.; Lastuvka, Z. New records of mining moths from the Iberian Peninsula from 2014 (Insecta: Lepidoptera) SHILAP Revista de Lepidopterología, vol. 42, núm. 168, diciembre, 2014, pp. 633-647 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45540983010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 633-647 New records of mining m 26/11/14 11:15 Página 633 SHILAP Revta. lepid., 42 (168), diciembre 2014: 633-647 eISSN: 2340-4078 ISSN: 0300-5267 New records of mining moths from the Iberian Peninsula from 2014 (Insecta: Lepidoptera) A. Lasˇtu˚vka & Z. Lasˇtu˚vka Abstract New records of Nepticulidae, Opostegidae, Heliozelidae, Bucculatricidae and Gracillariidae for Portugal and Spain are presented. Stigmella sakhalinella Puplesis, 1984, Ectoedemia louisella (Sircom, 1849), Bucculatrix albedinella (Zeller, 1839), B. demaryella (Duponchel, 1840), B. ulmella Zeller, 1848, B. albella Stainton, 1867, Caloptilia semifascia (Haworth, 1828), Parornix devoniella (Stainton, 1850), P. torquillella (Zeller, 1850), Phyllonorycter distentella (Zeller, 1846), P. cavella (Zeller, 1846), P. deschkai Triberti, 2007, P. acerifoliella (Zeller, 1839) and P. dubitella (Herrich-Schäffer, 1855) are new for Spain, and Stigmella sakhalinella, Bucculatrix albedinella , Caloptilia betulicola (Hering, 1928), Parornix tenella (Rebel, 1919) and Phyllonorycter ochreojunctella (Klimesch, 1942) are new for Portugal. Stigmella sakhalinella, Ectoedemia louisella, Bucculatrix albedinella , B. -
Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part II Cupressoideae
1 2 Bull. CCP 4 (2): 51-78. (10.2015) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part II Cupressoideae Summary The cone morphology of the Cupressoideae genera Calocedrus, Thuja, Thujopsis, Chamaecyparis, Fokienia, Platycladus, Microbiota, Tetraclinis, Cupressus and Juniperus are presented in young stages, at pollination time as well as at maturity. Typical cone diagrams were drawn for each genus. In contrast to the taxodiaceous Cupressaceae, in Cupressoideae outgrowths of the seed-scale do not exist; the seed scale is completely reduced to the ovules, inserted in the axil of the cone scale. The cone scale represents the bract scale and is not a bract- /seed scale complex as is often postulated. Especially within the strongly derived groups of the Cupressoideae an increased number of ovules and the appearance of more than one row of ovules occurs. The ovules in a row develop centripetally. Each row represents one of ascending accessory shoots. Within a cone the ovules develop from proximal to distal. Within the Cupressoideae a distinct tendency can be observed shifting the fertile zone in distal parts of the cone by reducing sterile elements. In some of the most derived taxa the ovules are no longer (only) inserted axillary, but (additionally) terminal at the end of the cone axis or they alternate to the terminal cone scales (Microbiota, Tetraclinis, Juniperus). Such non-axillary ovules could be regarded as derived from axillary ones (Microbiota) or they develop directly from the apical meristem and represent elements of a terminal short-shoot (Tetraclinis, Juniperus). -
Wingnut (Juglandaceae)
83 Wingnut (Juglandaceae) as a new generic host for Pityophthorus juglandis (Coleoptera: Curculionidae) and the thousand cankers disease pathogen, Geosmithia morbida (Ascomycota: Hypocreales) Stacy M. Hishinuma, Paul L. Dallara, Mohammad A. Yaghmour, Marcelo M. Zerillo, Corwin M. Parker, Tatiana V. Roubtsova, Tivonne L. Nguyen, Ned A. Tisserat, Richard M. Bostock, Mary L. Flint, Steven J. Seybold1 Abstract—The walnut twig beetle (WTB), Pityophthorus juglandis Blackman (Coleoptera: Curculionidae), vectors a fungus, Geosmithia morbida Kolařík, Freeland, Utley, and Tisserat (Ascomycota: Hypocreales), which colonises and kills the phloem of walnut and butternut trees, Juglans Linnaeus (Juglandaceae). Over the past two decades, this condition, known as thousand cankers disease (TCD), has led to the widespread mortality of Juglans species in the United States of America. Recently the beetle and pathogen were discovered on several Juglans species in northern Italy. Little is known about the extra-generic extent of host acceptability and suitability for the WTB. We report the occurrence of both the WTB and G. morbida in three species of wingnut, Pterocarya fraxinifolia Spach, Pterocarya rhoifolia Siebold and Zuccarini, and Pterocarya stenoptera de Candolle (Juglandaceae) growing in the United States Department of Agriculture-Agricultural Research Service, National Clonal Germplasm Repository collection in northern California (NCGR) and in the Los Angeles County Arboretum and Botanic Garden in southern California, United States of America. In two instances (once in P. stenoptera and once in P. fraxinifolia) teneral (i.e., brood) adult WTB emerged and were collected more than four months after infested branch sections had been collected in the field. Koch’s postulates were satisfied with an isolate of G.