Unusually Well Preserved Casts of Halite Crystals: a Case from the Upper Frasnian of Northern Lithuania

Total Page:16

File Type:pdf, Size:1020Kb

Unusually Well Preserved Casts of Halite Crystals: a Case from the Upper Frasnian of Northern Lithuania Sedimentary Geology 308 (2014) 44–52 Contents lists available at ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Unusually well preserved casts of halite crystals: A case from the Upper Frasnian of northern Lithuania Tomasz Rychliński a,⁎, Piotr Jaglarz a, Alfred Uchman a,JuliusVainoriusb a Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland b Šiauliai Aušros Museum, Vilniaus St. 74, LT-76283 Šiauliai, Lithuania article info abstract Article history: Upper Frasnian carbonate-siliciclastics of the Stipinai Formation (northern Lithuania) comprise a bed of calcare- Received 28 February 2014 ous silty arenite with casts of halite crystals, including hopper crystals. Unusually well-preserved casts occur on Received in revised form 14 May 2014 the lower surface of the bed, while poorly-preserved casts are present on the upper bedding surface. The casts Accepted 18 May 2014 originated as the result of the dissolution of halite crystals which grew in the sediment. The dissolution took Available online 23 May 2014 place during early stages of diagenesis, when host sediment was soft. Unstable cavities after crystal dissolution fi Editor: B. Jones were lled by overlying sediment forming their casts. The collapsing sediment form sink-hole deformation struc- tures which disturb wave–ripple cross lamination from the upper part of the bed. Dewatering pipe structures are Keywords: also present. The casts and accompanying sink-hole and dewatering pipes are classified as the postdepositional Deformation structures deformation structures caused by haloturbation. Halite casts © 2014 Elsevier B.V. All rights reserved. Haloturbation Evaporites Main Devonian Field Stipinai Formation 1. Introduction complete obliteration of primary sedimentary features. Such processes are termed haloturbations (Smith, 1971; Mazzullo et al., 1991). Gener- Crystals of highly soluble evaporitic minerals, such as halite, are spo- ally, the halite crystal casts, even if recognized properly, remain not radically preserved in clastic or calcareous sediments because of their well explained. Pseudomorphs originate by chemical substitution or al- low preservation potential. Their pseudomorphs, filled with calcite, teration, but the formation of crystal casts can be caused by a more com- dolomite or silica are more common (e.g., Staples, 1950; Handford and plex combination of chemical and physical processes, a scenario which Moore, 1976; Álvaro et al., 2000; Gandin et al., 2005; Martill et al., can shed a light on sedimentary and diagenetic environmental changes. 2007; Leitner et al., 2013), while casts of crystals are relatively rare. Unusually well preserved casts of hopper cubic halite crystals, men- The casts of halite crystals have been described among others from tioned earlier by Khabakov (1962) and Sorokin (1978), occur in the the Cambrian Aretomy Formation of the Canadian Rocky Mountains carbonate-siliciclastic Upper Devonian (Frasnian) sediments of north- (Demicco and Hardie, 1994), the Silurian Wills Creek Formation of ern Lithuania. Their high-quality preservation and the presence of ac- the central Appalachians (Demicco and Hardie, 1994), the Lower companying intrastratal deformation structures, analysed in sections Triassic Moenkopi Formation of the Little Colorado River valley, U.S.A. perpendicular and parallel to the bedding surfaces, allow a precise (McKee, 1954), the Upper Triassic of the Lorraine region (Plaziat and reconstruction of the mechanism of crystal cast formation and clearly Desprairies, 1969), and the Oligocene of the Southern Pyrenees (De defines early diagenetic environmental changes. The mechanism Raaf, 1964). Casts or pseudomorphs of halite crystals are unequivocal seems to be not unique and limited to the studied case, because it refers indicators of evaporitic conditions in a sedimentary environment, but to common phenomena, which are not stratigraphically or geographi- they are usually poorly preserved in host sediments because of the cally restricted. Therefore, the interpretation can be successfully applied high solubility of halite. Growth and dissolution of halite or other evap- to other geological formations, deposited in a hypersaline environment orates during early diagenesis resulted in the disturbance or even under hot and arid climatic conditions. 2. Geological setting ⁎ Corresponding author. E-mail addresses: [email protected] (T. Rychliński), [email protected] (P. Jaglarz), [email protected] (A. Uchman), [email protected] The Upper Devonian of northern Lithuania (Fig. 1) belongs to the (J. Vainorius). western part of the so-called Main Devonian Field of the East European http://dx.doi.org/10.1016/j.sedgeo.2014.05.005 0037-0738/© 2014 Elsevier B.V. All rights reserved. T. Rychliński et al. / Sedimentary Geology 308 (2014) 44–52 45 In northern Lithuania, the Upper Devonian is characterized by inter- calated carbonate, sulphate and argillaceous-marly facies (Vodzinskas and Kadūnas, 1969). In the study area (Petrašiūnai Quarry, Pakruojis District), Upper Devonian (Upper Frasnian) rocks belonging to the Stipinai Formation crop out (Paškevičius, 1997). Silty dolostones, calcar- eous siltstones and green dolomitic marlstones form the lower part of the section, which contains the casts of halite preserved in one bed of fine-grained siliciclastic sediments. The upper part of the section is built of metasomatic cavernous dolostones comprising marine skeletal fossils, including tetracorals, brachiopods and gastropods (Sorokin, 1978; Paškevičius, 1997). In the study area, Devonian rocks are covered by Quaternary tills and sands, which are a few metres thick. 3. Materials and methods A detailed measured profile was done for the lower part of the study section (Fig. 3). Well-preserved casts of cubic halite crystals were found in situ only on the lower surface of one bed of calcareous silty arenite Fig. 1. The location of the studied area. in the lower part of the Stipinai Formation (Fig. 3) (GPS coordinates: E023°54.344′, N55°59.586′; ±3 m). The bed is about 2 cm thick. It was sampled for laboratory studies. Most of the samples with the best Platform (Vodzinskas and Kadūnas, 1969). The Main Devonian Field preserved casts were collected ex situ on the near slag heap of the is an area of the largest Devonian outcrops and subcrops in Europe. It Petrašiūnai Quarry (E023°54.333′, N55°59.616′; ±3 m). Halite cast encompasses northern Lithuania, Latvia, southern Estonia, and adjacent morphology and their arrangement within the bed as well as accom- parts of Russia and the Baltic Sea. This area belongs to the Baltic Syneclise panying sedimentary structures were determined from numerous (Paškevičius, 1997; Bełka and Narkiewicz, 2008). The Devonian succes- polished slabs. A dozen of thin sections through the casts oriented sion comprises a part of the Palaeozoic cover of the East European perpendicular to the bedding was analysed by means of an optical mi- Platform. The Lower and Middle Devonian succession of the Main croscope under the 20–200× magnifications. Petrographic analyses of Devonian Field is built of continental siliciclastics intercalated by rock fragments and thin sections were made also by means of the scan- shallow-marine sediments (Ziegler, 1988; Bełka and Narkiewicz, ning electron microscope (SEM). Selected thin sections were stained 2008). The Upper Devonian consists of alluvial siliciclastics and shallow with alizarin red-S and potassium ferricyanide in order to distinguish marine carbonate (dolomite) and evaporitic facies (Paškevičius, 1997; calcite from dolomite and ferroan from non-ferroan carbonate minerals. Bełka and Narkiewicz, 2008, with references therein; Fig. 2). The illustrated specimens are hosted in the Institute of Geological Fig. 2. Palaeogeographic–palaeotectonic sketch of north-eastern Europe during Late Devonian times with marked location of the study area. After Ziegler (1988),modified. Download English Version: https://daneshyari.com/en/article/4689429 Download Persian Version: https://daneshyari.com/article/4689429 Daneshyari.com.
Recommended publications
  • Stratigraphic Framework And
    U.S. DEPARTMENT OF THE INTERIOR SCIENTIFIC INVESTIGATIONS MAP 2916 U.S. GEOLOGICAL SURVEY (SHEET 2 OF 2) Explanatory pamphlet accompanies map 82° 80° 78° 82° 80° 78° Table 1.—Wells used to construct cross section F–F '. Refer to figure 2 for well locations. Also shown are perforated intervals, initial production flow per day, and reservoir names. Lake Ontario [Reservoirs: C, “Clinton” sandstone; M, Medina sandstone; T, Tuscarora Sandstone. Oil and gas production terms: AF, after hydrofracturing; BO, barrels of oil; BW, barrels of water; MCFG, thousand cubic feet of gas; N, natural (no stimulation of reservoir); OH, open hole (no casing with perforations); P&A, plugged and abandoned; TA, temporarily abandoned; TO, trace of oil; TW, trace of water. Well that connects section F–F ' with section A–A' shown as 81, A–A' (54); number in parentheses refers to well 54 on section A–A' . A' Lake Ontario —, no data] A' Map American Township Date of Perforated or open hole Initial production flow Orleans Company Lease County/State Reservoirs no. Petroleum (7.5–min quadrangle) log run interval (depth in ft) of natural gas, oil, Niagara Institute no. and water (per day) Ontario Erie 1 34–089–22051 Southern Triangle Oil Co. No. 1 Swetnam Comm. Licking/Ohio Burlington 11–27–63 — P&A, 11–29–63; 1,200 MCFG, — N (from “Clinton” in nearby well No. 1 Houck, 6–30–1905) Lake Erie 2 34–089–22300 Lake Shore Pipeline Co. No. 1 Shipley Licking Burlington 12–13–65 — P&A, 12–12–65; 1,200 MCFG, — B N (from “Clinton” in nearby well No.
    [Show full text]
  • Download the Poster
    EVALUATION OF POTENTIAL STACKED SHALE-GAS RESERVOIRS ACROSS NORTHERN AND NORTH-CENTRAL WEST VIRGINIA ABSTRACT Jessica Pierson Moore1, Susan E. Pool1, Philip A. Dinterman1, J. Eric Lewis1, Ray Boswell2 Three shale-gas units underlying northern and north-central West Virginia create opportunity for one horizontal well pad to produce from multiple zones. The Upper Ordovician Utica/Point Pleasant, Middle Devonian Marcellus, and Upper Devonian Burket/Geneseo 1 West Virginia Geological & Economic Survey, 2 U.S. DOE National Energy Technology Laboratory construction of fairway maps for each play. Current drilling activity focuses on the Marcellus, with more than 1,000 horizontal completions reported through mid-2015. Across northern West Virginia, the Marcellus is 40 to 60 ft. thick with a depth range between 5,000 and 8,000 ft. Total Organic Carbon (TOC) REGIONAL GEOLOGY is generally 10% or greater. Quartz content is relatively high (~60%) and clay content is low (~30%). Reservoir pressure estimates STRUCTURAL CROSS-SECTION FROM HARRISON CO., OHIO TO HARDY CO., WEST VIRGINIA range from 0.3 to 0.7 psi/ft and generally increase to the north. Volumetric assessment of the Marcellus in this area yields preliminary NW SE 81° 80° 79° 78° 1 2 3 4 5 original gas-in-place estimates of 9 to 24 Bcf/mi2. OH WV WV WV WV Pennsylvania Figure 2.—Location of seismic sections, wells, and major basement Harrison Co. Marshall Co. Marion Co. Preston Co. Hardy Co. 34-067-20103 47-051-00539 47-049-00244 47-077-00119 47-031-00021 UTICA SHALE PLAY GR 41 miles GR 36 miles GR 27 miles GR 32 miles GR Westmoreland The Burket /Geneseo interval is approximately 15 to 40 ft thick across the fairway.
    [Show full text]
  • Proterozoic Paleozoic Cambrian Ordovician Silurian Devonian
    Approximate location of Burley No. 1 well Seismic Stratigraphic Extensional and Thrust Age West Formation or Group Name East Lithology Packages Orogenic Events Sheets Perm. Lower Upper Post-Pottsville rocks, undivided Pottsville Group and Middle post-Pottsville rocks Alleghanian orogeny Penn. Lower Pottsville Group Upper Greenbrier Limestone and Mauch Chunk Group Greenbrier Limestone Miss. Lower Berea Sandstone, Sunbury Shale, and Price Formation Venango Group Venango Group (Formation) Hampshire Formation and Riceville Formation Chagrin Shale Bradford Group Bradford Group Huron Mbr. of Greenland Gap Group the Ohio Shale Upper Salina sheet Acadian orogeny Java Formation Angola Shale Member Devonian West Falls Elk Group Formation Rhinestreet Shale Member Brallier Formation Elk Group Sonyea Formation Genesee Formation Harrell Shale Middle Tully Limestone, Hamilton Group, Marcellus Shale, and Onondaga Limestone Hamilton Group Lower Oriskany Sandstone and Helderberg Group Upper Salina Group (includes salt beds) Salina Group, Tonoloway Limestone, and Wills Creek Formation and Wills Creek Formation Salina Group Paleozoic Lockport Dolomite and Keefer Sandstone McKenzie Limestone and Keefer Sandstone Silurian Rose Hill Formation Lower Reedsville- Tuscarora Sandstone Taconic orogeny Martinsburg Juniata Formation Juniata Formation sheet Oswego Sandstone Upper Reedsville Shale (Utica Shale at base) Reedsville Shale Trenton Limestone Trenton Limestone Black River Limestone Middle Ordovician Knox unconformity Beekmantown Group Beekmantown Group ? Passive continental Lower Rome- margin modified Waynesboro Upper sandstone member of the Copper Ridge Dolomite of the Knox Group by Rome trough sheet Upper extension Copper Ridge Dolomite of the Knox Group Knox Group and Middle pre-Knox rocks Conasauga Group and Rome Formation Cambrian Lower Autochthonous Grenvillian basement Grenvillian Grenvillian basement basement Proterozoic Figure 3.--Correlation chart of Paleozoic and Proterozoic rocks in the study area and associated thrust sheets.
    [Show full text]
  • In Weight Percent
    Bass Islands Dolomite Keyser Limestone (lower) and Salina Group Keyser Limestone (lower) and Salina Group Big Mountain Shale through Tonoloway Limestone Bass Islands Dolomite Bass Islands Dolomite Bass Islands Dolomite Bass Islands Dolomite Bass Islands Dolomite and Camillus Shale Bass Islands Dolomite and Camillus Shale Bass Islands Dolomite and Camillus Shale Bass Islands Dolomite and Camillus Shale Bass Islands Dolomite through Salina Group Bass Islands Dolomite and Salina Group Bass Islands Dolomite and Salina Group Bass Islands Dolomite and Salina Group Bass Islands Dolomite through Tonoloway Limestone Bass Islands Dolomite through Tonoloway Limestone Bass Islands Dolomite and Camillus Shale Keyser Formation Keyser Formation and Camillus Shale Keyser Limestone (lower) through Wills Creek Formation Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Camillus Shale Syracuse Formation Syracuse Formation Syracuse Formation Syracuse Formation Syracuse Formation Syracuse Formation Syracuse Formation Syracuse Formation Syracuse Formation Syracuse Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation Vernon Formation
    [Show full text]
  • Xsec A-A Sht1of2 Layout FINAL V
    U.S. DEPARTMENT OF THE INTERIOR SCIENTIFIC INVESTIGATIONS MAP 3425 U.S. GEOLOGICAL SURVEY (SHEET 1 OF 2) Explanatory pamphlet accompanies map A Ontario Allegheny Lowlands Plateau province province SEVERNE WATKINS-BEAVER LODI POINT FIRTREE DAMS ALPINE VAN ETTEN ANTICLINE ANTICLINE ANTICLINE ANTICLINE ANTICLINE ANTICLINE GLENORA SYNCLINE UNNAMED COHOCTON CORBETT POINT ENFIELD CAYUTA SYNCLINE SYNCLINE SYNCLINE SYNCLINE SYNCLINE Bend in section Bend in section Bend in section New York W SE Oatka Genesee NW SE Canisteo NW SW Pennsylvania Black Creek River Canaseraga River Tuscarora Creek Creek Creek FEET MILES 0 10 20 30 40 50 60 70 80 90 3,000 1 2 3 4 5 6 William Duchscherer, Jr. E.F. Blair and Associates NYS Natural Gas Company E.F. Blair and Associates Bowdoin Storage Service Inc. NYS Natural Gas Company No. 1 J. Klotzbach No. 1 L. Tyler No. 1 Albert McClurg No. 1 Arthur N. Kennedy No. 1 Hubbard No. 1 Robert Olin API No. 31-037-05117 API No. 31-037-04593 API No. 31-051-04552 API No. 31-051-04630 API No. 31-101-21496 API No. 31-101-03924 Genesee Co., New York Genesee Co., New York Livingston Co., New York Livingston Co., New York Steuben Co., New York Steuben Co., New York Perrysburg Formation Dunkirk Dunkirk Shale Shale 2,000 Member Wiscoy Sandstone Member Java Perrysburg West River Shale, Nunda Wiscoy Sandstone Member Formation Formation Genundewa Sandstone Member unnamed Pipe Creek 0 Pipe Creek shale member Limestone, Penn Member Shale Member Shale Member Perrysburg Yan Shale, and rmation Formation 0 Dun West River Shale, Java Fo kirk
    [Show full text]
  • Unraveling the Central Appalachian Fold-Thrust Belt, Pennsylvania: the Power of Sequentially Restored Balanced Cross Sections for a Blind Fold-Thrust Belt
    Unraveling the central Appalachian fold-thrust belt, Pennsylvania: The power of sequentially restored balanced cross sections for a blind fold-thrust belt Peter B. Sak1, Nadine McQuarrie2,*, Benjamin P. Oliver2,*, Natasha Lavdovsky2, and Margaret S. Jackson1,* 1Department of Earth Sciences, Dickinson College, Carlisle, Pennsylvania 17013, USA 2Department of Geosciences, Princeton University, Princeton, New Jersey 08540, USA ABSTRACT Anticlinorium, the northernmost structure of example of a blind thrust system. At its north- the fold-thrust belt that cuts upsection from ernmost end, the fold-thrust belt sweeps east- We present a kinematic model for the the Cambrian Waynesboro Formation to the ward, creating the broad arc of the Pennsylvania sequential development of the Appalachian Silurian Salina décollement. Because the fault salient (Fig. 1). Although previous research in fold-thrust belt (eastern U.S.) across a clas- that cores the Nittany Anticlinorium can only the central Appalachians has made considerable sic transect through the Pennsylvania salient. facilitate 10 km of shortening on the plateau, progress toward quantifying how shortening New map and strain data are used to create an early history of Appalachian Plateau LPS is distributed among microscopic (e.g., Smart a balanced geologic cross section from the in Silurian and younger rocks is required to et al., 1997; Thorbjornsen and Dunne, 1997), southern edge of the Valley and Ridge Prov- balance the section. We propose that the addi- mesoscopic (e.g., Smart et al., 1997; Hogan
    [Show full text]
  • Proquest Dissertations
    University of Alberta NEW PORASPIDINE HETEROSTRACANS FROM THE LOCHKOVIAN (EARLY DEVONIAN) MAN ON THE HILL LOCALITY, MACKENZIE MOUNTAINS, NORTHWEST TERRITORIES, CANADA, AND THE PHYLOGENY AND EVOLUTIONARY HISTORY OF PORASPIDINAE by Jessica Rae Hawthorn © A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Department of Biological Sciences Edmonton, Alberta Spring 2009 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 OttawaONK1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-54698-7 Our file Notre r6f6rence ISBN: 978-0-494-54698-7 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Nntemet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Figure 2 (Pdf)
    South North West East West East West East West East Eastern Kentucky Central West Virginia Eastern and Central Ohio Western and Central Pennsylvania Western and Central New York Age Stratigraphy from: Repetski and others (2008) Stratigraphy from: Ryder and others (2008, 2009) Stratigraphy from: Ryder and others (2008, 2009, 2010) Stratigraphy from: Berg and others (1983); Ryder and others (2010) Stratigraphy from: Repetski and others (2008) Era System Series (Ma) Valley Valley Rome Trough Rome Trough Rome Trough and Ridge Bedford Shale and Ridge Cleveland Member Venango Group Catskill Formation 359.2 Upper Devonian strata, undivided Ohio Shale Ohio Three Lick Bed Chagrin Shale equivalent rocks Chagrin Shale Bradford Group Foreknobs Formation Perrysburg Formation Shale Dunkirk Shale Member Huron Member of Ohio Shale Huron Member Elk Group Scherr Formation Upper Dunkirk Shale Java Formation Angola Shale Member Olentangy Shale (upper) Java Formation Java Formation Angola Shale Member West Falls West Falls Brallier Formation West Falls Angola Shale Member Formation Rhinestreet Shale Member Rhinestreet Shale Member of the Formation Rhinestreet Shale Member Formation Rhinestreet Shale Member Upper Devonian strata, undivided West Falls Formation 385.3 Sonyea and Genesee Formations, undivided Sonyea and Genesee Formations, undivided Sonyea and Genesee Formations, undivided Tully Limestone Tully Limestone Tully Limestone Mahantango Formation Mahantango Formation Moscow, Ludlowville, and Skaneateles Shales, undivided Hamilton Olentangy Shale (lower)
    [Show full text]
  • Geologic Resources Inventory Ancillary Map Information Document
    U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Directorate Geologic Resources Division Allegheny Portage Railroad National Historic Site and Johnstown Flood National Memorial GRI Ancillary Map Information Document Produced to accompany the Geologic Resources Inventory (GRI) Digital Geologic-GIS Data for Allegheny Portage Railroad National Historic Site and Johnstown Flood National Memorial alpo_jofl_geology.pdf Version: 5/11/2020 I Allegheny Portage Railroad National Historic Site and Johnstown Flood National Memorial Geologic Resources Inventory Map Document for Allegheny Portage Railroad National Historic Site and Johnstown Flood National Memorial Table of Contents Geologic Resourc..e..s.. .I.n..v..e..n..t.o...r.y.. .M...a..p.. .D...o..c..u..m...e...n..t............................................................................ 1 About the NPS Ge..o..l.o..g..i.c... .R..e..s..o..u...r.c..e..s.. .I.n..v..e..n...t.o..r.y.. .P...r.o..g...r.a..m............................................................... 3 GRI Digital Maps a..n...d.. .S..o..u...r.c..e.. .M...a..p.. .C...i.t.a..t.i.o...n..s.................................................................................. 5 Index Map .................................................................................................................................................................... 6 Digital Bedrock Geologic-GIS Map of Allegheny Portage Railroad National Historic Site, John..s..t..o..w...n.. .F..l.o..o...d.. .N...a..t.i.o..n..a..l. .M...e..m...o...r.i.a..l. .a..n..d... .V..i.c..i.n..i.t.y.................................................. 7 Map Unit Lis.t................................................................................................................................................................... 7 Map Unit De.s..c..r.i.p..t.io..n..s...................................................................................................................................................... 8 PNcc - Cas.s..e..l.m...a..n.
    [Show full text]
  • Bedrock Geology of Pennsylvania"
    POLYGON ATTRIBUTES FOR "BEDROCK GEOLOGY OF PENNSYLVANIA" UNITNO: A unique number assigned to each map unit in the data sets for geologic units and dikes. The number, which is not derived from the 1980 map, places the units approximately, but not completely, in a sequence ranging from those having the youngest ages (lower numbers) to those having the oldest ages (higher numbers). In the data set for geologic units, there are 193 unique unit numbers ranging from 1 to 195 (unit number 6, kimberlite, and unit number 15, Quarryville Diabase, occur only in the data set for dikes). Units 8 (diabase), 163 (pegmatite), and 183 (metadiabase) occur in both the data set for geologic units and the data set for dikes. MAP_SYMBOL: The symbol used to label the unit on the 1980 state geologic map, except where modified as indicated in "changes.pdf." Please note that the "double-bar P" shown on the 1980 map to indicate units of Pennsylvanian age has been changed to "P," the special character for Triassic units (capital "T" joined to small capital "R") has been changed to "Tr,"and the special character for units of Cambrian age ("C" with horizontal bar) has been changed to "C" in the attribute table. NAME: The name of the geologic unit in the explanation of the 1980 state geologic map (Berg and others, 1980), except where modified as indicated in "changes.pdf." AGE: The age of the geologic unit as shown on the 1980 state geologic map (Berg and others, 1980). Ages are at the level of a geologic period.
    [Show full text]
  • Unraveling the Central Appalachian Fold-Thrust Belt, Pennsylvania: the Power of Sequentially Restored Balanced Cross Sections for a Blind Fold-Thrust Belt
    Unraveling the central Appalachian fold-thrust belt, Pennsylvania: The power of sequentially restored balanced cross sections for a blind fold-thrust belt Peter B. Sak1, Nadine McQuarrie2,*, Benjamin P. Oliver2,*, Natasha Lavdovsky2, and Margaret S. Jackson1,* 1Department of Earth Sciences, Dickinson College, Carlisle, Pennsylvania 17013, USA 2Department of Geosciences, Princeton University, Princeton, New Jersey 08540, USA ABSTRACT Anticlinorium, the northernmost structure of example of a blind thrust system. At its north- the fold-thrust belt that cuts upsection from ernmost end, the fold-thrust belt sweeps east- We present a kinematic model for the the Cambrian Waynesboro Formation to the ward, creating the broad arc of the Pennsylvania sequential development of the Appalachian Silurian Salina décollement. Because the fault salient (Fig. 1). Although previous research in fold-thrust belt (eastern U.S.) across a clas- that cores the Nittany Anticlinorium can only the central Appalachians has made considerable sic transect through the Pennsylvania salient. facilitate 10 km of shortening on the plateau, progress toward quantifying how shortening New map and strain data are used to create an early history of Appalachian Plateau LPS is distributed among microscopic (e.g., Smart a balanced geologic cross section from the in Silurian and younger rocks is required to et al., 1997; Thorbjornsen and Dunne, 1997), southern edge of the Valley and Ridge Prov- balance the section. We propose that the addi- mesoscopic (e.g., Smart et al., 1997; Hogan
    [Show full text]
  • Geology and Mineral Resources of Frederick County
    COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES GEOLOGY AND MINERAL RESOURCES OF FREDERICK COUNTY Charles Butts and Raymond S. Edmundson BULLETIN 80 VIRGINIA DIVISION OF MINERAL RESOURCES James L. Calver Commissioner ol Mineral Resources and State Geologisl CHARLOTTESVI LLE, VI RGINIA | 966 COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES GEOLOGY AND MINERAL RESOURCES OF FREDERICK COUNTY Charles Butts and "'"Raymond S. Edmundson BULLETIN 80 VIRGINIA DIVISION OF MINERAL RESOURCES James L. Calver Commissioner of Mineral Resources and State Geologist CHARLOTTESVILLE, VIRGINIA I 966 Couuorwnlr-trr or VnctNrl Dnp,llruBxt oF PuRctrAsEs eto Suppr-v Rrcrrruorqo 1966 DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT Richmond, Virginia MenvrN M. Surrronr,ltNo, Director A. S. Recrrat, J*., Executiue Assistant BOARD Canr,rsr,e H. HunrBr,srNe, Williamsburg, Chairman ANonnw A. Fenr,ov, Danville, Vice-Chairman Joe P. Gn Ls, Roanoke Ar,r,eN M. HBvwenp, Newport News Cr,euor A. Ju,ssue, Jn., Charlottesville Genraxo E. Moss, Chase City Ennu,sr L. Surrrr, Grundy JorrN S. TrronxroN, Culpeper Ancrrrr L. WENnrcH, Hopewell CONTENTS Pecr Abstract 1 qrannage . 5 5 6 9 .'..'....',....'..',.',......''..'.'..'...'.'..'....,....-'.....'..'.......'.....'.'.....'..'.''..'.-.'.',.. l ? 12 o1 2r 24 26 28 Lincolnshire formation ,o r{unourgEdinburg rormatlonformation --. ... ... ....... ......... ......... .. .................. 30 Oranda formation ................
    [Show full text]