Allocyclic Controls on Paleozoic Sedimentation in the Central Appalachian Basin

Total Page:16

File Type:pdf, Size:1020Kb

Allocyclic Controls on Paleozoic Sedimentation in the Central Appalachian Basin U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY ALLOCYCLIC CONTROLS ON PALEOZOIC SEDIMENTATION IN THE CENTRAL APPALACHIAN BASIN by C. Blaine Cecil1, David K. Brezenski2, and Frank T. Dulong1 Open File Report 98-577 This report is preliminary and has not been reviewed for conformity with the U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 'U.S. Geological Survey, Reston, VA 2Maryland Geological Survey, Baltimore, MD 1998 GEOLOGICAL SOCIETY OF AMERICA FIELD TRIP #4 OCTOBER 23-25, 1998 ALLOCYCLIC CONTROLS ON PALEOZOIC SEDIMENTATION IN THE CENTRAL APPALACHIAN BASIN TRIP LEADERS C. Blaine Cecil David Brezinski Frank Dulong FIELD TRIP GUIDE: C. Blaine Cecil David Brezinski Frank Dulong With contributions by: John Repetski Cortland Eble Nick Fedorko USGS Open File Report 98-577 FIELD TRIP STOPS Stop 1 Late Precambrian and early Cambrian strata, US Route 340, Weverton, MD. Stop 2 Early and middle Ordovician strata along the Chesapeake and Ohio Canal, Williamsport, MD. Stop 3 Devonian Keyser Limestone and Oriskany Sandstone, 1-68, Hancock, MD. Stop 4 Late Devonian and early Mississippian strata, 1-68, Sidling Hill, MD. Stop 5 Late Silurian strata, 1-68, Rocky Gap State Park, MD. Stop 6 Late Ordovician and early Silurian strata, Wills Creek water gap, Cumberland MD. Stop 7 Late Mississippian and Middle Pennsylvania strata at the Mississippian- Pennsylvanian Unconformity, 1-68, Savage Mt., MD. Stop 8 Late Devonian and early Mississippian strata, 1-68, Little Savage Mt., MD. Stop 9 Late Mississippian strata, Keystone Mine, Springs, PA. Stop 10 Middle Pennsylvania high alumina clay deposit, 1-68, Chestnut Ridge, WV. Stop 11 Mississippian-Pennsylvanian unconformity and early Middle Pennsylvania strata, 1-68, Chestnut Ridge, WV. Stop 12 Late Middle and early Late Pennsylvania strata, 1-68, west flank of Chestnut Ridge, WV. Stop 13 Late Pennsylvania paleosols, 1-79, Goshen Rd. exit, Morgantown, WV. Stop 14 Late Pennsylvania coal-bearing strata, Morgantown Mall, Morgantown WV. Abstract ALLOCYCLIC CONTROLS ON PALEOZOIC SEDIMENTATION IN THE CENTRAL APPALACHIAN BASIN C. Blaine Cecil, U.S. Geological Survey, Reston, VA 20192; (703)648-6415, fax 703-648- 6419, [email protected]; Frank Dulong, U.S. Geological Survey, Reston, VA 20192; (703)648-6416, fax 703-648-6419, [email protected] and David K. Brezinski, Maryland Geological survey, 2300 St. Paul St., Baltimore, MD, 21218-5210, phone (410) 554-5526 with contributions from John Repetski, U.S, Geological; Survey, Cortland Eble, Kentucky Geological Survey, and Nick Fedorko, West Virginia Geological and Economic Survey. This trip originates in Herndon, VA, near Washington D.C.'s Dulles International Airport and ends at the Pittsburgh International Airport, Pittsburgh, Pennsylvania. This trip will examine evidence for allocyclic controls on Paleozoic sedimentation and stratigraphy along an east-west transect across the Appalachian Basin from Washington's Dulles International Airport in northern Virginia to Pittsburgh International Airport in western Pennsylvania. Emphasis will be on variation in sediment supply as a function of long- to short-term paleoclimatic change. Relationships of climatic change to tectonic and eustatic processes will be discussed. Day one will include stops in strata that range in age from the Late Precambrian to the Early Mississippian. Ordovician and Silurian stops will include strata that primarily formed in response to Early Paleozoic aridity. Devonian and Mississippian stops will illustrate evidence for climatic controls on the origin of petroleum source rocks and reservoirs. The onset of the breakup of Pangea and Triassic rifting and climatically controlled rift basin cyclic sedimentation will also be illustrated during day one. Day two will illustrate climatic controls on Mississippian, Pennsylvanian, and Permian (?) sediment supply, and tectonic and eustatic controls on accommodation space. Factors that influenced the deposition of essentially coal-barren strata (Mississippian) and coal-rich strata (Pennsylvanian) will be a primary topic of discussion. The cyclic nature of Middle and Late Pennsylvanian coal occurrences, and the factors that influenced this cyclicity, will also be illustrated and discussed on day two. INTRODUCTION The objective of this field trip is to evaluate allocyclic controls (Beerbower, 1964), principally paleoclimate, on Paleozoic sedimentation and stratigraphy in the Appalachian foreland basin. The emphasis of the trip is to demonstrate long- to short-term paleoclimate change (Table 1) as a primary control on sediment supply, both chemical and siliciclastic (Fig. 1A and IB). Long-term climatic change as used herein is an estimated running average over time of variation in intermediate- to short-term climatic changes in rainfall. Interpretations of climate variation are based on paleoclimate indicators such as paleosols, sediment supply, sedimentary geochemistry and mineralogy, and paleontology. t t 81 41 NUMBER OF WET MONTHS NUMBER OF WET MONTHS WET: RAINFALL EXCEEDS EVAPOTRANSFORATION WET: RAINFALL EXCEEDS EVAPOTRANSPORATION ui tTa| H *l *I « >l 4| 6] (if *f «] »| (Of 111 n| NUMBER OF WET MONTHS NUMBER OF WET MONTHS WET* RAINFALL EXCEEDS EVAPOTRANSPORATIQN WET: RAiNFALL EXCEEDS EVAPOTRANSPORATION ENTJSOL AND IIMCEPT1SOL DRYSUBHUM1D I I HISTOSOL MOIST SUBHUMfD I I SEMlARtO HUMID SPODOSOL MOLLJSOL OXISOL ARID PERHOMK) AR!OIS( ALF1SOL ULTISOL 11" > r""*r~«"i'~«i ?T » ti 21al *i si «i 7| si » NUMBER OF WET MONTHS NUMBER OF WET MONTHS WET: RAINFALL EXCEEDS EVAPOTRANSPORATION WET: RAiNFALL EXCEEDS EVAPOTRANSPORATION Figure 1. A) Potential for fluvial siliciclastic load as function of climate; B) Potential for fluvial dissolved load as function of climate; C) Potential for peat formation as function of climate; D) Potential for eolian transport as a function of climate; E) Formation of USD A soil orders as a function of climate; and F) Climate classification based on the number of wet months per year. Field trip stops will examine Paleozoic strata that illustrate the sedimentary response to paleo-tropical rainfall regimes that ranged in duration from long-term to short-term (Table 1) and from arid to perhumid (Table 2, Figure IF). Tectonic and eustatic processes also are discussed at each Stop. These later two allocyclic processes, which have been studied, modeled, and are the subject of numerous publications and field trips, are most commonly considered to control sediment supply in contrast to climate which is generally not considered, As an example, a rapid flux of siliciclastic material into depocenters is generally attributed to tectonic uplift whereas siliciclastic sediment starvation is usually explained by sea-level rise, trapping sediments in estuaries. Basal sandstone units of the Cambrian, Silurian, Mississippian, and Pennsylvania in the Appalachian basin, are generally attributed to tectonically induced influx whereas laterally extensive shale deposits, such as the Ordovician Martinsburg shale and Devonian black shale units, are inferred to result from sediment trapping or autocyclic deposition of prodelta muds. Although tectonics clearly play a roll in uplift and subsidence, and eustasy contributes to accommodation space, variation in climate, particularly long- to short-term variation in rainfall in tropical conditions, is of greater importance as a control on sediment supply (e.g., Ziegler et al., 1987; Cecil, 1990 and references therein; Cecil et al. 1993). The trip stops illustrate that all three allocyclic processes, tectonics, eustatics, and climatics, require evaluation in order to understand and explain lithostratigraphy. Table 1. Tropical and subtropical climate change classification (modified from Cecil, 1990) RELATIVE CAUSE TIME DURATION (YEARS) Long-term Movement of continents 106-108 through latitudes; orogenesis 105-107 Intermediate-term 100 and 400 ka cycles 105 of orbital eccentricity Short-term Axial tilt and precession 104 cycles Very short-term not qualified 103 (millennial) Instantaneous Weather io-2 (weeks, days, hours) Table 2. Tropical climate regimes and degree of seasonally based on the number of consecutive wet months per year (modified from Thornthwaite, 1948). Number of wet months Climate regime Degree of seasonally 0 arid nonseasonal 1-2 semiarid minimal 3-5 dry subhumid maximum 6-8 moist subhumid medial 9-11 humid minimal 12 perhumid nonseasonal Many definitions of tropical climatic regimes are based on annual rainfall; few, however, attempt to incorporate seasonality (i.e., Thornthwaite, 1948). It is becoming increasingly apparent, however, that it is not the absolute amount of annual rainfall but the seasonality of annual rainfall that governs weathering, pedogenesis, erosion and sediment supply for a given catchment basin (e.g., Ziegler et al., 1987; Cecil, 1990). In order to assign degrees of seasonality, climate regimes, as used herein, are based on the number of wet months in a year. A wet month is defined as a month in which precipitation exceeds evapotransporation (Table 2, Fig. IF). By the limits set forth in Table 2 and Figure IF, both arid and perhumid conditions are nonseasonal. All other rainfall conditions have some degree of seasonality. Maximum seasonality and maximum fluvial siliciclastic sediment supply occur under dry subhumid conditions when there are three to five consecutive wet months (Fig. 1A). Maximum
Recommended publications
  • Message from the New Chairman
    Subcommission on Devonian Stratigraphy Newsletter No. 21 April, 2005 MESSAGE FROM THE NEW CHAIRMAN Dear SDS Members: This new Newsletter gives me the pleasant opportunity to thank you for your confidence which should allow me to lead our Devonian Subcommission successfully through the next four years until the next International Geological Congress in Norway. Ahmed El Hassani, as Vice-Chairman, and John Marshall, as our new Secretary, will assist and help me. As it has been our habit in the past, our outgoing chairman, Pierre Bultynck, has continued his duties until the end of the calendar year, and in the name of all the Subcommission, I like to express our warmest thanks to him for all his efforts, his enthusi- asm for our tasks, his patience with the often too slow progress of research, and for the humorous, well organized and skil- ful handling of our affairs, including our annual meetings. At the same time I like to thank all our outgoing Titular Members for their partly long-time service and I express my hope that they will continue their SDS work with the same interest and energy as Corresponding Members. The new ICS rules require a rather constant change of voting members and the change from TM to CM status should not necessarily be taken as an excuse to adopt the lifestyle of a “Devonian pensioner”. I see no reason why constantly active SDS members shouldn´t become TM again, at a later stage. On the other side, the rather strong exchange of voting members should bring in some fresh ideas and some shift towards modern stratigraphical tech- niques.
    [Show full text]
  • Lancaster County Geology
    LancasterLancaster CountyCounty GeologyGeology gfgh µ OverOver TopographicTopographic ReliefRelief Om Miles Í897 0 10 hg Lebanon County Adamstown ¦¨§76 ! Berks County Oha ! Oo Denver ab322 Ephrata Csc Í501 ! Í72 TRh 272 TRn Oco Lititz Í ! Akron Elizabethtown Manheim ! Dauphin County! ! TRhc Cr TRs c Os Rn ! T Terre Hill TRg Trd 322 772 ab 10 Í 222 625 Í ab Í897 Í Í283 Ohm Í230 Oan Í241 East New Holland Oe 722 Petersburg Í Cbs ! Mount Joy ! ! Czc Cch Í23 Cm gga fl R 743 T Í Csb gg pg ggd Í441 Ck Cl 772 72 Í 23 Í ! Í Ca Marietta Ch Lancaster Mountville ! 340 ! Í Columbia 30 ! ! ba Í462 Í462 ab30 Í999 Millersville Ccc Strasburg ! ! Cv Í741 Í741 Í272 41 Í County Chester 896 222 Í gn Christiana ba mg ! oct Cah Í372 S u sq u e h a n n a R iv e r Y o rk C o u n ty gqm LEGEND COUNTY BOUNDARIES Í324 Source: Lancaster County GIS, Copyright (c) 2019 MAJOR ROADS This map to be used for reference or illustrative purposes only. This map FAULT is not a legally recorded plan, survey, or engineering schematic Quarryville and it is not intended to be used as such. For complete disclaimer see: RIVERS AND STREAMS ! http://www.co.lancaster.pa.us/gisdisclaimer DIKE wc ORDOVICIAN Í472 Oan, ANNVILLE FORMATION LIMESTONE TRIASSIC 372 Oco, COCALICO FORMATION DARK GRAY SHALE TRfl, LIMESTONE FANGLOMERATE Í TRg, GETTYSBURG FORMATION SHALE-SANDSTONE Oe, EPLER FORMATION LIMESTONE TRh, HAMMER CREEK FORMATION SANDSTONE-SHALE Oha, ANNVILLE, HERSHEY, AND MYERSTOWN FORMATION TRhc, HAMMER CREEK QUARTZ-CONGLOMERATE Ohm, HERSHEY AND MYERSTOWN FORMATION LIMESTONE 272 TRn, NEW
    [Show full text]
  • Stratigraphic Succession in Lower Peninsula of Michigan
    STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation
    [Show full text]
  • Geological Investigations in Ohio
    INFORMATION CIRCULAR NO. 21 GEOLOGICAL INVESTIGATIONS IN OHIO 1956 By Carolyn Farnsworth STATE OF OHIO C. William O'Neill, Governor DEPARTMENT OF NATURAL RESOURCES A. W. Marion, Director NATURAL RESOURCES COMMISSION Milton Ronsheim, Chairman John A. Slipher, Bryce Browning, Vice Chairman Secretary C. D. Blubaugh Dean L. L. Rummell Forrest G. Hall Dr. Myron T. Sturgeon A. W. Marion George Wenger DIVISION OF GEOLOGICAL SURVEY Ralph J. Bernhagen, Chief STATI OF OHIO DIPAlTMIMT 011 NATUlAL llSOUlCH DIVISION OF &EOLO&ICAL SURVEY INFORMATION CIRCULAR NO. 21 'GEOLOG·ICAL INVESTIGATIONS IN OHIO 1956 by CAROLYN FARNSWORTH COLUMBUS 1957 Blank Page CONTENTS Page Introduction 1 Project listing by author 2 Project listing by subject . 22 Economic geology 22 Aggregates . 22 Coal . • 22 Ground water 22 Iron .. 22 Oil and gas 22 Salt . 22 Sand and gravel 23 General .. 23 Geomorphology 23 Geophysics 23 Glacial geology 23 Mineralogy and petrology . 24 Clay .. 24 Coal . 24 Dolomite 24 Limestone. 24 Sandstone •• 24 Shale. 24 Till 25 Others 25 Paleontology. 25 Stratigraphy and sedimentation 26 Structural geology . 27 Miscellaneous . 27 Geographic distribution. 27 Statewide 27 Areal. \\ 28 County 29 Miscellaneous . 33 iii Blank Page I INTRODUCTION In September 1956, letters of inquiry and questionnaires were sent to all Ohio geologists on the mailing list of the Ohio Geological Survey, and to other persons who might be working on geological problems in Ohio. This publication has been compiled from the information contained on the returned forms. In most eases it is assumed that the projects listed herein will culminate in reports which will be available to the profession through scientific journals, government publications, or grad- uate school theses.
    [Show full text]
  • Geologic Resources Inventory Ancillary Map Information Document for Little River Canyon National Preserve
    U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Directorate Geologic Resources Division Little River Canyon National Preserve GRI Ancillary Map Information Document Produced to accompany the Geologic Resources Inventory (GRI) Digital Geologic Data for Little River Canyon National Preserve liri_geology.pdf Version: 6/30/2020 I Little River Canyon National Preserve Geologic Resources Inventory Ancillary Map Information Document for Little River Canyon National Preserve Table of Contents Geologic Reso..u..r..c..e..s.. .I.n..v..e..n..t.o...r.y.. .M...a..p.. .D...o..c..u..m...e...n..t............................................................................ 1 About the NPS.. .G...e..o..l.o..g..i.c... .R..e..s..o..u...r.c..e..s.. .I.n..v..e..n...t.o..r.y.. .P...r.o..g...r.a..m............................................................... 3 GRI Digital Ma.p..s.. .a..n...d.. .S..o..u...r.c..e.. .M...a..p.. .C...i.t.a..t..i.o..n..s.................................................................................. 5 Index Ma..p........................................................................................................................................................................ 6 Map Unit List ................................................................................................................................... 7 Map Unit Desc..r.i.p..t.i.o...n..s...................................................................................................................... 9 Qal - Allu..v..iu..m... .a..n..d.. .l.o..w... .t.e..r.r.a..c..e.. .d..e..p..o..s..i.t.s. .(..Q..u..a..t.e..r..n..a..r.y.)..................................................................................................... 9 Tal - Fluv..i.a..l. .d..e..p..o..s.i.t.s.. .(.T..e..r..t.ia..r..y.)........................................................................................................................................ 9 PNpv - P.o..t.t.s..v..i.l.le.. .F...o..r.m...a..t.i.o..n.
    [Show full text]
  • GEOLOGIC SUMMARY of the APPALACHIAN BASIN, with REFERENCE to the SUBSURFACE DISPOSAL of RADIOACTIVE WASTE SOLUTIONS by George W
    TEI-791 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY" GEOLOGIC SUMMARY OF THE APPALACHIAN BASIN, WITH;REFERENCE TO THE SUBSURFACE DISPOSAL OF RADIOACTIVE WASTE SOLUTIONS* By George W. Colton June 1961 Report TEI-791 This report is preliminary and ha^;not been edited for conformity with G^logical Survey format and nomenclature. ?1 ^Prepared on behalf of the U. S. Atomic Energy Commission. CONTENTS Abstract* .......................... 5 Introduction. ........................ 7 Purpose of report. ................... 7 Organization of report .................. 7 Location and extent of area. .............. Q Acknowledgments. .................... 10 Geologic framework. ..................... 10 Depositional framework ................. 10 Structural framework .................. llj. Stratigraphy. ........................ 17 Late Precambrian stratified sequence .......... 17 Early Cambrian clastic sequence. ............ 18 Thickness and depth ................ 22 Cambrian-Ordovician carbonate sequence ......... 23 Thickness and depth . , ........... 35 Late Ordovician clastic sequence ............ 35 Thickness and depth ................ Mi- Early Silurian clastic sequence. ............ kk Thickness and depth ................ 51 Silurian-Devonian carbonate sequence .......... 52 Thickness and depth ................ 62 Devonian classic sequence. ............... 63 Thickness and depth ................ 69 Mississippian sequence ................. 70 Thickness and depth ................ 79 Pennsylvanian sequence ................. 79 Waste
    [Show full text]
  • Lexington Quadrangle Virginia
    COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES GEOLOGY OF THE LEXINGTON QUADRANGLE VIRGINIA KENNETH F. BICK REPORT OF INVESTIGATIONS I VIRGINIA DIVISION OF MINERAL RESOURCES Jomes L. Colver Commissioner of Minerol Resources ond Stote Geologist CHARLOTTESVI LLE, VI RGI N IA 1960 COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES GEOLOGY OF THE LEXINGTON QUADRANGLE VIRGINIA KENNETH F. BICK REPORT OF INVESTIGATIONS I VIRGINIA DIVISION OF MINERAL RESOURCES Jomes L. Colver Commissioner of Minerol Resources ond Stote Geologist CHARLOTTESVI LLE, VI RGI N IA 1960 Couuowwoer,rn op Vtncrwre DopenrupNr op Puncnesrs exo Supptv Rrculroxn 1960 DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT Richmond. Virginia MenvrN M. SurHnnr,eNn, Director BOARD Vrcron W. Stnwenr, Petersburg, Chairtnan G. Ar,vrn MessnNnunc, Hampton, Viee'Chairman A. Pr,urvrnr BmnNn, Orange C. S. Cenrnn, Bristol ANpnpw A. Fenr,pv, Danville WonrnrrvcroN FauLKNEn, Glasgow SvoNpv F. Slter,r,, Roanoke EnwrN H. Wrr,r,, Richmond Wrr,r,renr P. Wooor,nv. Norfolk CONTENTS Pece Abstract. '"*i"#:;;;;: . : ::: , : ::.:::::::::..::::::. :.::.::::::: ::,r Z Geography 8 Purpose. 4 Previous Work. Present Work and Acknowledgements. 5 Geologic Formations. 6 Introduction. 6 Precambrian System. 6 Pedlar formation 6 Precambrian and Cambrian Systems. 6 Discussion. 6 Swift Run formation 8 Catoctin greenstone. I Unieoiformation...... ......... I Hampton(Harpers)formation. .......... I Erwin (Antietam) quartzite. Cambrian System . I0 Shady (Tomstown) dolomite 10 Rome (Waynesboro) formation.... ll Elbrook formation. 12 Conococheague limestone. l3 Ordovician System. ......., 14 Chepultepeclimestone. .......... 14 Beekmantown formatron. 14 New Market limestone. 15 Lincolnshire limestone. 16 Edinburg formation. 16 Martinsburg shale... 17 SilurianSystem. ......... 18 Clinchsandstone..... .......... 18 Clinton formation.
    [Show full text]
  • Geologic Cross Section C–C' Through the Appalachian Basin from Erie
    Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p.
    [Show full text]
  • PALEOZOIC STRATIGRAPHIC COLUMN of Central Pennsylvania
    PALEOZOIC STRATIGRAPHIC COLUMN of Central Pennsylvania _____________________________________________________________________*Ridge Makers System & Series Formation and Members General Description Llewellyn Formation Cycles of conglomerate or sandstone; underclay coal, shale Pnn. L & N 2000’+ Pottsville Formation* Cycles of conglomerate or sandstone; underclay coal, shale L & M 1400’ Mauch Chunk Grayish red and gray shale M 5000’ Miss. Pocono* Mount Carbon Gray to buff, medium grained, cross-bedded sandstone 1600’ 940’ Beckville Gray to buff, medium grained, cross-bedded sandstone Lower 225’ Spechty Kopf Gray, fine and medium grained sandstone conglomerate 435’ near middle and base Catskill Duncannon Asymmetric, upward-fining fluvial cycles, basal nonred, locally 7250’ 2000’ conglomeratic sandstone is overlain by grayish red sandstone and siltstones Sherman Creek Interbedded grayish red claystone and fine grained, cross- 2400’ bedded sandstone Upper Irish Valley Interbedded, grayish red and olive gray sandstone, siltstone, 2850’ shale, overlain upward-fining cyclic deposits of gray sandstone and red siltstone Trimmers Rock Medium gray siltstone and shale, with fine grained sandstone in 2000’ upper part; graded bedding common Harrell Olive and medium light gray shale 200’ Mahantango Sherman Ridge* Olive gray, fossiliferous, claystone with interbedded fine 1600’ 600’ sandstones which coarsen upward Montebello Olive gray, medium grained, locally conglomeratic, fossiliferous 600’ sandstone, interbedded with siltstone and claystone in upward-
    [Show full text]
  • Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States
    Graduate Theses, Dissertations, and Problem Reports 2011 Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States Margaret E. Walker-Milani West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Walker-Milani, Margaret E., "Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States" (2011). Graduate Theses, Dissertations, and Problem Reports. 3327. https://researchrepository.wvu.edu/etd/3327 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States Margaret E. Walker-Milani THESIS submitted to the College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Geology Richard Smosna, Ph.D., Chair Timothy Carr, Ph.D. John Renton, Ph.D. Kathy Bruner, Ph.D.
    [Show full text]
  • Geologic Map of the Loudoun County, Virginia, Part of the Harpers Ferry Quadrangle
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP MF-2173 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE LOUDOUN COUNTY, VIRGINIA, PART OF THE HARPERS FERRY QUADRANGLE By C. Scott Southworth INTRODUCTION Antietam Quartzite constituted the Chilhowee Group of Early Cambrian age. Bedrock and surficial deposits were mapped in 1989-90 as part For this report, the Loudoun Formation is not recognized. As of a cooperative agreement with the Loudoun County Department used by Nickelsen (1956), the Loudoun consisted primarily of of Environmental Resources. This map is one of a series of geologic phyllite and a local uppermost coarse pebble conglomerate. Phyl- field investigations (Southworth, 1990; Jacobson and others, lite, of probable tuffaceous origin, is largely indistinguishable in the 1990) in Loudoun County, Va. This report, which includes Swift Run, Catoctin, and Loudoun Formations. Phyl'ite, previously geochemical and structural data, provides a framework for future mapped as Loudoun Formation, cannot be reliably separated from derivative studies such as soil and ground-water analyses, which phyllite in the Catoctin; thus it is here mapped as Catoctin are important because of the increasing demand for water and Formation. The coarse pebble conglomerate previously included in because of potential contamination problems resulting from the the Loudoun is here mapped as a basal unit of the overlying lower recent change in land use from rural-agricultural to high-density member of the Weverton Formation. The contact of the conglom­ suburban development. erate and the phyllite is sharp and is interpreted to represent a Mapping was done on 5-ft-contour interval topographic maps major change in depositional environment.
    [Show full text]
  • Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1
    Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1 THOMAS L. LEWIS, Department of Geological Sciences, Cleveland State University, Cleveland, OH 44115 ABSTRACT. Clastic sediments, derived from southeastern, eastern and northeastern sources, prograded west- ward into a shallow basin at the northwestern margin of the Appalachian Basin in Late Devonian and Early Mississippian time. The western and northwestern boundary of the basin was the submerged Cincinnati Arch. The marine clastic wedges provided a northwest paleoslope and a distal, gentle shelf-edge margin that controlled directional emplacement of coarse elastics. Rising sea levels coupled with differences in sedimen- tation rates and localized soft-sediment deformation within the basin help explain some features of the Bedford and Berea Formations. The presence of sand-filled mudcracks and flat-topped symmetrical ripple marks in the Berea Formation attest to very shallow water deposition and local subaerial exposure at the time of emplacement of part of the formation. Absence of thick, channel-form deposits eastward suggests loss of section during emergence. OHIO J. SCI. 88 (1): 23-39, 1988 INTRODUCTION The Bedford Formation (Newberry 1870) is the most The Ohio Shale, Bedford, and Berea Formations of lithologically varied formation of the group. It is com- northern Ohio are clastic units which record prograda- prised of gray and red mudshales, siltstone, and very tional and transgressional events during Late Devonian fine-grained sandstone. The Bedford Formation thins and Early Mississippian time. The sequence of sediments both to the east and west and reaches its maximum is characterized by (1) gray mudshale, clayshale, siltstone, thickness in the Cleveland area.
    [Show full text]