Phytohormones and Effects on Growth and Metabolites of Microalgae: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Optimizing the Productivity and Sustainability of Algal
OPTIMIZING THE PRODUCTIVITY AND SUSTAINABILITY OF ALGAL BIOFUEL SYSTEMS: INVESTIGATING THE BENEFITS OF ALGAL DIVERSITY AND UTILIZING BREWERY WASTEWATER FOR CULTIVATION By Jakob Owen Nalley A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Integrative Biology—Doctor of Philosophy Ecology, Evolutionary Biology and Behavior—Dual Major 2016 ABSTRACT OPTIMIZING THE PRODUCTIVITY AND SUSTAINABILITY OF ALGAL BIOFUEL SYSTEMS: INVESTIGATING THE BENEFITS OF ALGAL DIVERSITY AND UTILIZING BREWERY WASTEWATER FOR CULTIVATION By Jakob Owen Nalley The era of inexpensive fossil fuels is coming to a close, while society is beginning to grapple with the byproducts of their combustion. Identifying alternative and more sustainable energy sources is of the utmost importance. One extremely promising option is biofuel derived from microalgae. Although algal biofuels have the capability to generate a substantial amount of biodiesel, there are a number of limitations that are hindering its commercialization. In this dissertation, I examine two main limitations concerning the economic and environmental sustainability of mass algal cultivation: (1) achieving and maintaining high algal productivity and (2) identifying an inexpensive water and nutrient source. Through the application of some core principles of ecological theory and employing a trait-based approach, I will illustrate how fostering algal diversity within these biofuel systems can lead to high productivity and stability. Knowledge of algal eco-physiological traits is essential for assembling optimal algal communities. Thus, I conducted a large thermal trait survey for 25 different algal species to better understand their biomass and fatty acid production across a range of temperatures. Finally, I will present two experiments I conducted investigating the feasibility of coupling algal cultivation with wastewater remediation generated at breweries. -
Phytochemistry, Pharmacology and Agronomy of Medicinal Plants: Amburana Cearensis, an Interdisciplinary Study
17 Phytochemistry, Pharmacology and Agronomy of Medicinal Plants: Amburana cearensis, an Interdisciplinary Study Kirley M. Canuto, Edilberto R. Silveira, Antonio Marcos E. Bezerra, Luzia Kalyne A. M. Leal and Glauce Socorro B. Viana Empresa Brasileira de Pesquisa Agropecuária, Universidade Federal do Ceará, Brazil 1. Introduction Plants are an important source of biologically active substances, therefore they have been used for medicinal purposes, since ancient times. Plant materials are used as home remedies, in over-the-counter drug products, dietary supplements and as raw material for obtention of phytochemicals. The use of medicinal plants is usually based on traditional knowledge, from which their therapeutic properties are oftenly ratified in pharmacological studies. Nowadays, a considerable amount of prescribed drug is still originated from botanical sources and they are associated with several pharmacological activities, such as morphine (I) (analgesic), scopolamine (II) atropine (III) (anticholinergics), galantamine (IV) (Alzheimer's disease), quinine (V) (antimalarial), paclitaxel (VI), vincristine (VII) and vinblastine (VIII) (anticancer drugs), as well as with digitalis glycosides (IX) (heart failure) (Fig. 1). The versatility of biological actions can be attributed to the huge amount and wide variety of secondary metabolites in plant organisms, belonging to several chemical classes as alkaloids, coumarins, flavonoids, tannins, terpenoids, xanthones, etc. The large consumption of herbal drugs, in spite of the efficiency of -
Airborne Microalgae: Insights, Opportunities, and Challenges
crossmark MINIREVIEW Airborne Microalgae: Insights, Opportunities, and Challenges Sylvie V. M. Tesson,a,b Carsten Ambelas Skjøth,c Tina Šantl-Temkiv,d,e Jakob Löndahld Department of Marine Sciences, University of Gothenburg, Gothenburg, Swedena; Department of Biology, Lund University, Lund, Swedenb; National Pollen and Aerobiology Research Unit, Institute of Science and the Environment, University of Worcester, Worcester, United Kingdomc; Department of Design Sciences, Lund University, Lund, Swedend; Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmarke Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concen- tration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosys- tems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and Downloaded from state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmo- spheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our under- standing of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamina- tion events or invasions. he presence of microorganisms in the atmosphere has been phyta and Ochrophyta in the atmosphere (taxonomic classifica- Tdebated over centuries. -
The Descent of the Flowering Plants in the Light of New Evidence from Phytochemistry and from Other Sources
The descent of the flowering plants in the light of new evidence from phytochemistry and from other sources. I. General discussion A.D.J. Meeuse Hugo de Vries-laboratorium en Hortus Botanicus, Amsterdam SUMMARY Accumulated phytochemical data partially compiled by Kubitzki in 1969, and evidence from various other sources point to a fundamental heterogeneity of the Flowering Plants, which is interpretedby the present author as an unmistakable indication of a multiple descent of the Angiosperms. The consequences of this viewpoint for taxonomic classifications and for phy- In logenetic speculations must be faced. view of the possible misunderstandingof some poin- ters, and in order to avoid erroneous interpretations of the accumulated evidence, a survey of the relevant data be indicated. Some tentative future appears to proposals concerning a classification of the will be made in the second of this Angiosperms part paper. 1. INTRODUCTION 1 Recently, Kubitzki (1969) pointed out that cogent phytochemical evidence renders a close relationship between the Polycarpicae or Ranales(s.l.) and sever- The of his discus- al other groups of the Dicotyledons most unlikely. corollary sion is that the Dicots (and, by inference, the Angiosperms) are rather hetero- geneous and did not all arise from a ranalean ancestral group, and that, in point kind of of fact, the ranalean alliance is more likely to represent a phylogenetic cul-de-sac. Most hesitatingly, Kubitzki admits the possibility of a multiple to statement descent of the Flowering Plants, referring a made over fifteenyears ago by Metcalfe (who suggested that the assumption of a polyphyletic origin of the Angiosperms may well provide the best explanation of the great diversity of their anatomicalfeatures) but, strangely enough, not mentioning more recent contributions dealing with the question of a single versus a multiple descent. -
Anatomical and Phytochemical Studies of the Leaves and Roots of Urginea Grandiflora Bak
Ethnobotanical Leaflets 14: 826-35. 2010. Anatomical and Phytochemical Studies of the Leaves and Roots of Urginea grandiflora Bak. and Pancratium tortuosum Herbert H. A. S. Sultan, B. I. Abu Elreish and S. M. Yagi* Department of Botany, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum, Sudan *Corresponding author E-mail address: [email protected] Issued: July 1, 2010 Abstract Urginea grandiflora Bak. and Pancratium tortuosum Herbert are bulbous, medicinal plants endemic to the Sudan. The aim of this study was to provide information on the anatomical properties of the leaves and roots of these two bulbous plants. Anatomical studies include cross sections of the leaves and roots. In addition, phytochemical screening methods were applied for identifying the major chemical groups in these species. This study provides referential botanical and phytochemical information for correct identification of these plants. Key words: bulbous plants; Urginea grandiflora; Pancratium tortuosum anatomy; phytochemistry. Introduction To ensure reproducible quality of herbal products, proper control of starting material is utmost essential. Thus in recent years there have been an emphasis in standardization of medicinal plants of therapeutic potential. According to World Health Organization (WHO) the macroscopic and microscopic description of a medicinal plant is the first step towards establishing its identity and purity and should be carried out before any tests are undertaken (Anonymous. 1996). Correct botanical identity based on the external morphology is possible when a complete plant specimen is available. Anatomical characters can also help the identification when morphological features are indistinct (David et al., 2008). Urginea grandiflora Bak. (Hyacinthaceae) and Pancratium tortuosum Herbert (Amaryllidaceae) are perennial, herbaceous and bulbous plants, distributed in the Red Sea Hills in Eastern Sudan (Andrews, 1956). -
UNIVERSITÉ DE SHERBROOKE Faculté De Génie Département De Génie Chimique Et Génie Biotechnologique
UNIVERSITÉ DE SHERBROOKE Faculté de génie Département de génie chimique et génie biotechnologique UTILISATION DU LACTOSÉRUM DANS UN PROCÉDÉ DE CULTURE DE MICROALGUES MIXOTROPHES POUR LA PRODUCTION DE BIODIESEL Thèse de doctorat Spécialité : génie biotechnologique Jean-Michel Bergeron Girard Jury : Michèle Heitz (directrice) Jean-Sébastien Deschênes (co-directeur) Réjean Tremblay (co-directeur) Nathalie Faucheux (co-directrice) J. Peter Jones (rapporteur) Isabelle Marcotte (évaluatrice externe) Joël Sirois (évaluateur interne) Sherbrooke (Québec) Canada Septembre 2014 À ma mère, à mon père, à ma sœur et à Maud qui cultivent avec moi la légèreté du quotidien RÉSUMÉ L‘objectif général du présent travail est la conception et le développement d‘un procédé original de culture de microalgues pour la production à grande échelle d‘huiles végétales à faible coût pour le marché du biodiesel. Une procédure multicritères de sélection de souches a d‘abord été mise au point afin d‘identifier la souche la plus susceptible de répondre favorablement aux paramètres du procédé préalablement déterminés. Cette procédure permet d‘inclure un grand nombre de critères et de considérer l‘importance relative de chacun de ces critères dans le pointage final accordé aux souches présélectionnées. Elle peut aussi être transposée à d‘autres contextes techniques et géographiques pour la sélection de souches destinées à diverses applications commerciales. Par la suite, l‘évaluation de la croissance et de la productivité lipidique de la souche sélectionnée a été effectuée au laboratoire, en mode nutritionnel mixotrophe, en présence d‘un important coproduit de l‘industrie laitière : le perméat de lactosérum. Le profil lipidique de la souche privilégiée, ainsi que sa capacité à hydrolyser le lactose, mise au jour pour la première fois, ont permis de démontrer le potentiel du procédé. -
Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A. -
Proposal for Revival of the Phytochemistry Section at BSA
Proposal for revival of the Phytochemistry section at BSA Phytochemistry is a broad field encompassing the molecular biology, genetics, physiology, ecology, evolution, and applications of plant-associated compounds and their biosynthetic pathways. This area has become an integral part of organismal studies in plant science, as plant chemical diversity plays a central role in ecology and evolution. Moreover, advances in metabolomics and genomics have allowed plant biochemistry to expand into many non-model species. Many of these advances have come in the last decade, during which time the Phytochemistry section of BSA has been inactive. We propose to reinstate the Phytochemistry section to recognize and support the growth in biochemical research across the diversity of plant lineages. The various existing sections of BSA house many areas of expertise that can synergistically function with a new, rejuvenated phytochemistry section. We are especially excited about the cross-pollination of ideas that would be made possible when a greater number of phytochemists attend the BSA meetings, interact with students and faculty from existing sections, and help generate innovative research projects and grant proposal ideas. We thus strongly believe that a revived Phytochemistry section would be timely and very useful for the botanical community moving forward. We imagine the new Phytochemistry section as a home for a broad array of researchers interested in plant physiology, biochemistry, biochemical genomics, metabolic evolution, biotic interactions, chemical ecology and medical ethnobotany. Having this section at BSA would not only provide a home to many existing society members and entice more phytochemists to join BSA, but also provide networking and recognition opportunities for students working in this field. -
An Update Review on Hibiscus Rosa Sinensis Phytochemistry and Wounds
Journal of Ayurvedic and Herbal Medicine 2018; 4(3): 135-146 Review Article An update review on Hibiscus rosa sinensis phytochemistry ISSN: 2454-5023 and medicinal uses J. Ayu. Herb. Med. 2018; 4(3): 135-146 Asmaa Missoum © 2018, All rights reserved Department of Biological and Environmemntal Sciences, College of Arts and sciences, Qatar University (QU), Doha, www.ayurvedjournal.com Qatar Received: 14-08-2018 Accepted: 10-10-2018 ABSTRACT Hibiscus rosa sinensis is known as China rose belonging to the Malvaceae family. This plant has various important medicinal uses for treating wounds, inflamation, fever and coughs, diabetes, infections caused by bacteria and fungi, hair loss, and gastric ulcers in several tropical countries. Phytochemical analysis documented that the main bioactive compounds responsible for its medicinal effects are namely flavonoids, tannins, terpenoids, saponins, and alkaloids. Experiment from recent studies showed that various types of extracts from all H. rosa sinensis parts exhibited a wide range of beneficial effects such as hypotensive, anti-pyritic, anti-inflammatory, anti-cancer, antioxidant, anti-bacterial, anti-diabetic, wound healing, and abortifacient activities. The few studies on toxicity exhibited that most extracts from all parts of this plant did not show any signs of toxicity at higher doses according to histological analysis. However, some of the extracts did alter biochemical and hematological parameters. Therefore, further research must be conducted to isolate the phytochemicals and explore their specific mechanism of action. This review summarizes the phytochemistry, pharmocology, and medicinal uses of this flower with the purpose of finding gaps demanding for future research and investigating its therapeutic potential through clinical trials. -
Plant Hormone Conjugation
Plant Molecular Biology 26: 1459-1481, 1994. © 1994 Kluwer Academic Publishers. Printed in Belgium. 1459 Plant hormone conjugation Gtlnther Sembdner*, Rainer Atzorn and Gernot Schneider Institut far Pflanzenbiochemie, Weinberg 3, D-06018 Halle, Germany (* author for correspondence) Received and accepted 11 October 1994 Key words: plant hormone, conjugation, auxin, cytokinin, gibberellin, abscisic acid, jasmonate, brassinolide Introduction (including structural elucidation, synthesis etc.) and, more recently, their biochemistry (including Plant hormones are an unusual group of second- enzymes for conjugate formation or hydrolysis), ary plant constituents playing a regulatory role in and their genetical background. However, the plant growth and development. The regulating most important biological question concerning the properties appear in course of the biosynthetic physiological relevance of plant hormone conju- pathways and are followed by deactivation via gation can so far be answered in only a few cases catabolic processes. All these metabolic steps are (see Conjugation of auxins). There is evidence in principle irreversible, except for some processes that conjugates might act as reversible deactivated such as the formation of ester, glucoside and storage forms, important in hormone 'homeosta- amide conjugates, where the free parent com- sis' (i.e. regulation of physiologically active hor- pound can be liberated by enzymatic hydrolysis. mone levels). In other cases, conjugation might For each class of the plant hormones so-called accompany or introduce irreversible deactivation. 'bound' hormones have been found. In the early The difficulty in investigating these topics is, in literature this term was applied to hormones part, a consequence of inadequate analytical bound to other low-molecular-weight substances methodology. -
C3c5e116de51dfa5b9d704879f6
GBE Gene Arrangement Convergence, Diverse Intron Content, and Genetic Code Modifications in Mitochondrial Genomes of Sphaeropleales (Chlorophyta) Karolina Fucˇı´kova´ 1,*, Paul O. Lewis1, Diego Gonza´lez-Halphen2, and Louise A. Lewis1 1Department of Ecology and Evolutionary Biology, University of Connecticut 2Instituto de Fisiologı´a Celular, Departamento de Gene´tica Molecular Universidad Nacional Auto´ nomadeMe´xico, Ciudad de Me´xico, Mexico *Corresponding author: E-mail: [email protected]. Accepted: August 3, 2014 Data deposition: Nine new complete mitochondrial genome sequences with annotated features have been deposited at GenBank under the accessions KJ806265–KJ806273. Genes from partially sequenced genomes have been deposited at GenBank under the accessions KJ845680– KJ845692, KJ845706–KJ845718, and KJ845693–KJ845705. Gene sequence alignments are available in TreeBase under study number 16246. Abstract The majority of our knowledge about mitochondrial genomes of Viridiplantae comes from land plants, but much less is known about their green algal relatives. In the green algal order Sphaeropleales (Chlorophyta), only one representative mitochondrial genome is currently available—that of Acutodesmus obliquus. Our study adds nine completely sequenced and three partially sequenced mi- tochondrial genomes spanning the phylogenetic diversity of Sphaeropleales. We show not only a size range of 25–53 kb and variation in intron content (0–11) and gene order but also conservation of 13 core respiratory genes and fragmented ribosomal RNA genes. We also report an unusual case of gene arrangement convergence in Neochloris aquatica, where the two rns fragments were secondarily placed in close proximity. Finally, we report the unprecedented usage of UCG as stop codon in Pseudomuriella schumacherensis.In addition, phylogenetic analyses of the mitochondrial protein-coding genes yield a fully resolved, well-supported phylogeny, showing promise for addressing systematic challenges in green algae. -
Wood Contains a Cell-Wall Structural Protein (Immunocytolocalization/Loblolly Pine/Extensin/Xylem/Xylogenesis) WULI BAO*, DAVID M
Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6604-6608, July 1992 Plant Biology Wood contains a cell-wall structural protein (immunocytolocalization/loblolly pine/extensin/xylem/xylogenesis) WULI BAO*, DAVID M. O'MALLEY, AND RONALD R. SEDEROFF Department of Forestry, Box 8008, North Carolina State University, Raleigh, NC 27695 Communicated by Joseph E. Varner, April 20, 1992 (received for review February 17, 1992) ABSTRACT A pine extensin-like protein (PELP) has been the proteins themselves (7-10) demonstrate tissue-specific localized in metabolically active cells of differentiating xylem expression in several different species of plants. Some struc- and in mature wood of loblolly pine (Pinus taeda L.). This tural proteins are associated with vascular systems (7, 9, 10). proline-rich glycosylated protein was purified from cell walls of For example, proline-rich proteins are found by immunocy- differentiating xylem by differential solubility and gel electro- tochemical localization to be associated with xylem vessel phoresis. Polyclonal rabbit antibodies were raised against the elements in soybean (7). Glycine-rich proteins in bean are deglycosylated purified protein (dPELP) and purified antibody located specifically in the tracheary elements of the protox- was used for immunolocalization. Immunogold and alkaline ylem (9). However, there have been no reports of cell-wall phosphatase secondary antibody staining both show antigen in structural proteins in wood cell walls (1). secondary cell walls ofearlywood and less staining in latewood. Hydroxyproline, the major amino acid of extensin, has Immunoassays of milled dry wood were developed and used to been measured in cell walls of cultured cells from Gingko show increased availability of antigen after hydrogen fluoride biloba, Cupressus sp., and Ephedra sp., suggesting the or cellulase treatment and decreased antigen after chlorite presence of extensin-like proteins in gymnosperms (11).