Anatomical and Phytochemical Studies of the Leaves and Roots of Urginea Grandiflora Bak
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea -
Antiproliferative Effects of Pancratium Maritimum Extracts on Normal and Cancerous Cells
IJMS Vol 43, No 1, January 2018 Original Article Antiproliferative Effects of Pancratium Maritimum Extracts on Normal and Cancerous Cells Ghaleb Tayoub1, PhD; Abstract Mohmad Al-Odat2, PhD; Amal Amer1, BSc; Background: Plants are an important natural source of Abdulmunim Aljapawe1, BSc; compounds used in cancer therapy. Pancratium maritimum Adnan Ekhtiar1,PhD contains potential anti-cancer agents such as alkaloids. In this study, we investigated the anti-proliferative effects of P. maritimum extracts on MDA-MB-231 human epithelial 1Department of Molecular Biology and Biotechnology, Atomic Energy adenocarcinoma cell line and on normal lymphocytes in vitro. Commission of Syria, Damascus, Syria; Methods: Leaves, flowers, roots, and bulbs of P. maritimum 2Department of Radiation Protection and Safety, Atomic Energy Commission of were collected and their contents were extracted and diluted to Syria, Damascus, Syria different concentrations that were applied on MDA-MB-231 cells and normal human lymphocytes in vitro for different intervals. Correspondence: Ghaleb Tayoub, PhD; Cells viability, proliferation, cell cycle distribution, apoptosis, Atomic Energy Commission of Syria, and growth were evaluated by flow cytometry and microscopy. P. O. Box: 6091, Damascus, Syria Parametric unpaired t-test was used to compare effects of plant Fax: +963 11 6112289 Tel: +963 11 2132580 extracts on treated cell cultures with untreated control cell Email: [email protected] cultures. IC50 was also calculated. Received: 3 September 2016 Results: P. maritimum extract had profound effects on Revised: 15 October 2016 Accepted: 13 November 2016 MDA-MB-321 cells. It inhibited cell proliferation in a dose- and time-dependent manner. The IC50 values were 0.039, 0.035, and 0.026 mg/ml after 48, 72, and 96 hours of treatment with 0.1 mg/ml concentration of bulb extract, respectively. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Phytochemistry, Pharmacology and Agronomy of Medicinal Plants: Amburana Cearensis, an Interdisciplinary Study
17 Phytochemistry, Pharmacology and Agronomy of Medicinal Plants: Amburana cearensis, an Interdisciplinary Study Kirley M. Canuto, Edilberto R. Silveira, Antonio Marcos E. Bezerra, Luzia Kalyne A. M. Leal and Glauce Socorro B. Viana Empresa Brasileira de Pesquisa Agropecuária, Universidade Federal do Ceará, Brazil 1. Introduction Plants are an important source of biologically active substances, therefore they have been used for medicinal purposes, since ancient times. Plant materials are used as home remedies, in over-the-counter drug products, dietary supplements and as raw material for obtention of phytochemicals. The use of medicinal plants is usually based on traditional knowledge, from which their therapeutic properties are oftenly ratified in pharmacological studies. Nowadays, a considerable amount of prescribed drug is still originated from botanical sources and they are associated with several pharmacological activities, such as morphine (I) (analgesic), scopolamine (II) atropine (III) (anticholinergics), galantamine (IV) (Alzheimer's disease), quinine (V) (antimalarial), paclitaxel (VI), vincristine (VII) and vinblastine (VIII) (anticancer drugs), as well as with digitalis glycosides (IX) (heart failure) (Fig. 1). The versatility of biological actions can be attributed to the huge amount and wide variety of secondary metabolites in plant organisms, belonging to several chemical classes as alkaloids, coumarins, flavonoids, tannins, terpenoids, xanthones, etc. The large consumption of herbal drugs, in spite of the efficiency of -
N at U R O P
N AT UROPA " BULLETIN OF THE EUROPEAN INFORMATION CENTRE FOR NATURE CONSERVATION COUNCIL OF EUROPE NATUROPA Number 22 eu ro p ean “Naturopa” is the new title of the bulletin formerly entitled "Naturope" (French version) and "Nature in Focus" (English version). information EDITORIAL G. G. Aym onin 1 cen tre THE MEDITERRANEAN FLORA for MUST BE SAVED J. M elato-Beliz 3 nature PLANT SPECIES CONSERVATION IN THE ALPS - conservation POSSIBILITIES AND PROBLEMS h . Riedl 6 THREATENED AND PROTECTED PLANTS IN THE NETHERLANDS J. Mennem a 10 G. G. AYMONIN THE HEILIGENHAFEN CONFERENCE ON THE Deputy Director of the Laboratory INTERNATIONAL CONSERVATION of Phanerogamy National Museum of Natural History OF WETLANDS AND WILDFOWL G. V. T. M atthews 16 Paris ENVIRONMENTAL CONSERVATION PROBLEMS IN MALTA L. J. Saliba 20 An international meeting of experts attempting to penetrate by analysing Norway across Siberia. Still in its specialising in problems associated what they term the “ecosystems”. natural state, often very dense and ECOLOGY IN A NEW BRITISH CITY J. G. Kelcey 23 with the impoverishment in plant spe Europe’s natural environments are practically impenetrable in places, it 26 cies of numerous natural environments characterized by a great diversity in is a magnificent forest of immense News from Strasbourg in Europe took place at Arc-et-Senans, their biological and aesthetic features. biological and economic value. Notes 28 France, in November 1973, under the From one end of the continent to the To the west of Norway and south of patronage of the Secretary General other the contrasts are striking. Most Sweden begin the forests of Central of the Council of Europe. -
TELOPEA Publication Date: 13 October 1983 Til
Volume 2(4): 425–452 TELOPEA Publication Date: 13 October 1983 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19834408 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea 2(4): 425-452, Fig. 1 (1983) 425 CURRENT ANATOMICAL RESEARCH IN LILIACEAE, AMARYLLIDACEAE AND IRIDACEAE* D.F. CUTLER AND MARY GREGORY (Accepted for publication 20.9.1982) ABSTRACT Cutler, D.F. and Gregory, Mary (Jodrell(Jodrel/ Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England) 1983. Current anatomical research in Liliaceae, Amaryllidaceae and Iridaceae. Telopea 2(4): 425-452, Fig.1-An annotated bibliography is presented covering literature over the period 1968 to date. Recent research is described and areas of future work are discussed. INTRODUCTION In this article, the literature for the past twelve or so years is recorded on the anatomy of Liliaceae, AmarylIidaceae and Iridaceae and the smaller, related families, Alliaceae, Haemodoraceae, Hypoxidaceae, Ruscaceae, Smilacaceae and Trilliaceae. Subjects covered range from embryology, vegetative and floral anatomy to seed anatomy. A format is used in which references are arranged alphabetically, numbered and annotated, so that the reader can rapidly obtain an idea of the range and contents of papers on subjects of particular interest to him. The main research trends have been identified, classified, and check lists compiled for the major headings. Current systematic anatomy on the 'Anatomy of the Monocotyledons' series is reported. Comment is made on areas of research which might prove to be of future significance. -
The Descent of the Flowering Plants in the Light of New Evidence from Phytochemistry and from Other Sources
The descent of the flowering plants in the light of new evidence from phytochemistry and from other sources. I. General discussion A.D.J. Meeuse Hugo de Vries-laboratorium en Hortus Botanicus, Amsterdam SUMMARY Accumulated phytochemical data partially compiled by Kubitzki in 1969, and evidence from various other sources point to a fundamental heterogeneity of the Flowering Plants, which is interpretedby the present author as an unmistakable indication of a multiple descent of the Angiosperms. The consequences of this viewpoint for taxonomic classifications and for phy- In logenetic speculations must be faced. view of the possible misunderstandingof some poin- ters, and in order to avoid erroneous interpretations of the accumulated evidence, a survey of the relevant data be indicated. Some tentative future appears to proposals concerning a classification of the will be made in the second of this Angiosperms part paper. 1. INTRODUCTION 1 Recently, Kubitzki (1969) pointed out that cogent phytochemical evidence renders a close relationship between the Polycarpicae or Ranales(s.l.) and sever- The of his discus- al other groups of the Dicotyledons most unlikely. corollary sion is that the Dicots (and, by inference, the Angiosperms) are rather hetero- geneous and did not all arise from a ranalean ancestral group, and that, in point kind of of fact, the ranalean alliance is more likely to represent a phylogenetic cul-de-sac. Most hesitatingly, Kubitzki admits the possibility of a multiple to statement descent of the Flowering Plants, referring a made over fifteenyears ago by Metcalfe (who suggested that the assumption of a polyphyletic origin of the Angiosperms may well provide the best explanation of the great diversity of their anatomicalfeatures) but, strangely enough, not mentioning more recent contributions dealing with the question of a single versus a multiple descent. -
On Pancratium Maritimum (Sea Daffodil, Sea Lily, Sand Lily)
Horticulture International Journal Mini Review Open Access On Pancratium maritimum (sea daffodil, sea lily, sand lily) Abstract Volume 2 Issue 3 - 2018 The perennial geophyte sea daffodil, sea lily or sand lily (Pancratium maritimum L.) John Pouris, Sophia Rhizopoulou is a flowering species during the dry summer, widely distributed along Mediterranean Department of Botany, National and Kapodistrian University of seashores and grown in a wild stage. Populations of sea daffodil are exposed to sea Athens, Greece breeze, salt spray, water shortage, strong solar radiation, elevated temperatures, substrate instability and moving sand. Also, it is expected that excessive tourism Correspondence: Sophia Rhizopoulou, Department of Botany, and human-induced activities will constrain the development of populations of P. Faculty of Biology, National and Kapodistrian University of maritimum, which have resulted from a long-term evolutionary process. P. maritimum Athens, Panepistimiopolis, 15784, Athens, Greece, exhibits large white flowers of a great aesthetic value during dry and hot summer Email [email protected] weather conditions, when simultaneously flowering plant taxa are scarce. The buds remain protected below the soil surface on the underground perennial organ and Received: December 17, 2017 | Published: June 08, 2018 the growth period alternates with a period of dormancy. The above-ground organs and tissues are exposed to harsh, ambient conditions and the large inflorescences of remarkable beauty and fragrance carry particular ornamental worth and thus economic value. Keywords: growth, life history, phenology, sea daffodils, seasonality Introduction the 1st century AD.16 It is worth mentioning that a watercolour of P. maritimum by the famous artist Ferdinand Bauer (folio 74, produced Pancratium maritimum L. -
Proposal for Revival of the Phytochemistry Section at BSA
Proposal for revival of the Phytochemistry section at BSA Phytochemistry is a broad field encompassing the molecular biology, genetics, physiology, ecology, evolution, and applications of plant-associated compounds and their biosynthetic pathways. This area has become an integral part of organismal studies in plant science, as plant chemical diversity plays a central role in ecology and evolution. Moreover, advances in metabolomics and genomics have allowed plant biochemistry to expand into many non-model species. Many of these advances have come in the last decade, during which time the Phytochemistry section of BSA has been inactive. We propose to reinstate the Phytochemistry section to recognize and support the growth in biochemical research across the diversity of plant lineages. The various existing sections of BSA house many areas of expertise that can synergistically function with a new, rejuvenated phytochemistry section. We are especially excited about the cross-pollination of ideas that would be made possible when a greater number of phytochemists attend the BSA meetings, interact with students and faculty from existing sections, and help generate innovative research projects and grant proposal ideas. We thus strongly believe that a revived Phytochemistry section would be timely and very useful for the botanical community moving forward. We imagine the new Phytochemistry section as a home for a broad array of researchers interested in plant physiology, biochemistry, biochemical genomics, metabolic evolution, biotic interactions, chemical ecology and medical ethnobotany. Having this section at BSA would not only provide a home to many existing society members and entice more phytochemists to join BSA, but also provide networking and recognition opportunities for students working in this field. -
An Update Review on Hibiscus Rosa Sinensis Phytochemistry and Wounds
Journal of Ayurvedic and Herbal Medicine 2018; 4(3): 135-146 Review Article An update review on Hibiscus rosa sinensis phytochemistry ISSN: 2454-5023 and medicinal uses J. Ayu. Herb. Med. 2018; 4(3): 135-146 Asmaa Missoum © 2018, All rights reserved Department of Biological and Environmemntal Sciences, College of Arts and sciences, Qatar University (QU), Doha, www.ayurvedjournal.com Qatar Received: 14-08-2018 Accepted: 10-10-2018 ABSTRACT Hibiscus rosa sinensis is known as China rose belonging to the Malvaceae family. This plant has various important medicinal uses for treating wounds, inflamation, fever and coughs, diabetes, infections caused by bacteria and fungi, hair loss, and gastric ulcers in several tropical countries. Phytochemical analysis documented that the main bioactive compounds responsible for its medicinal effects are namely flavonoids, tannins, terpenoids, saponins, and alkaloids. Experiment from recent studies showed that various types of extracts from all H. rosa sinensis parts exhibited a wide range of beneficial effects such as hypotensive, anti-pyritic, anti-inflammatory, anti-cancer, antioxidant, anti-bacterial, anti-diabetic, wound healing, and abortifacient activities. The few studies on toxicity exhibited that most extracts from all parts of this plant did not show any signs of toxicity at higher doses according to histological analysis. However, some of the extracts did alter biochemical and hematological parameters. Therefore, further research must be conducted to isolate the phytochemicals and explore their specific mechanism of action. This review summarizes the phytochemistry, pharmocology, and medicinal uses of this flower with the purpose of finding gaps demanding for future research and investigating its therapeutic potential through clinical trials. -
Plant Hormone Conjugation
Plant Molecular Biology 26: 1459-1481, 1994. © 1994 Kluwer Academic Publishers. Printed in Belgium. 1459 Plant hormone conjugation Gtlnther Sembdner*, Rainer Atzorn and Gernot Schneider Institut far Pflanzenbiochemie, Weinberg 3, D-06018 Halle, Germany (* author for correspondence) Received and accepted 11 October 1994 Key words: plant hormone, conjugation, auxin, cytokinin, gibberellin, abscisic acid, jasmonate, brassinolide Introduction (including structural elucidation, synthesis etc.) and, more recently, their biochemistry (including Plant hormones are an unusual group of second- enzymes for conjugate formation or hydrolysis), ary plant constituents playing a regulatory role in and their genetical background. However, the plant growth and development. The regulating most important biological question concerning the properties appear in course of the biosynthetic physiological relevance of plant hormone conju- pathways and are followed by deactivation via gation can so far be answered in only a few cases catabolic processes. All these metabolic steps are (see Conjugation of auxins). There is evidence in principle irreversible, except for some processes that conjugates might act as reversible deactivated such as the formation of ester, glucoside and storage forms, important in hormone 'homeosta- amide conjugates, where the free parent com- sis' (i.e. regulation of physiologically active hor- pound can be liberated by enzymatic hydrolysis. mone levels). In other cases, conjugation might For each class of the plant hormones so-called accompany or introduce irreversible deactivation. 'bound' hormones have been found. In the early The difficulty in investigating these topics is, in literature this term was applied to hormones part, a consequence of inadequate analytical bound to other low-molecular-weight substances methodology. -
Wood Contains a Cell-Wall Structural Protein (Immunocytolocalization/Loblolly Pine/Extensin/Xylem/Xylogenesis) WULI BAO*, DAVID M
Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6604-6608, July 1992 Plant Biology Wood contains a cell-wall structural protein (immunocytolocalization/loblolly pine/extensin/xylem/xylogenesis) WULI BAO*, DAVID M. O'MALLEY, AND RONALD R. SEDEROFF Department of Forestry, Box 8008, North Carolina State University, Raleigh, NC 27695 Communicated by Joseph E. Varner, April 20, 1992 (received for review February 17, 1992) ABSTRACT A pine extensin-like protein (PELP) has been the proteins themselves (7-10) demonstrate tissue-specific localized in metabolically active cells of differentiating xylem expression in several different species of plants. Some struc- and in mature wood of loblolly pine (Pinus taeda L.). This tural proteins are associated with vascular systems (7, 9, 10). proline-rich glycosylated protein was purified from cell walls of For example, proline-rich proteins are found by immunocy- differentiating xylem by differential solubility and gel electro- tochemical localization to be associated with xylem vessel phoresis. Polyclonal rabbit antibodies were raised against the elements in soybean (7). Glycine-rich proteins in bean are deglycosylated purified protein (dPELP) and purified antibody located specifically in the tracheary elements of the protox- was used for immunolocalization. Immunogold and alkaline ylem (9). However, there have been no reports of cell-wall phosphatase secondary antibody staining both show antigen in structural proteins in wood cell walls (1). secondary cell walls ofearlywood and less staining in latewood. Hydroxyproline, the major amino acid of extensin, has Immunoassays of milled dry wood were developed and used to been measured in cell walls of cultured cells from Gingko show increased availability of antigen after hydrogen fluoride biloba, Cupressus sp., and Ephedra sp., suggesting the or cellulase treatment and decreased antigen after chlorite presence of extensin-like proteins in gymnosperms (11).