Schnelle Transformationen. Eine Medienarchäologische Und

Total Page:16

File Type:pdf, Size:1020Kb

Schnelle Transformationen. Eine Medienarchäologische Und Humboldt-Universität zu Berlin Kultur-, Sozial- und Bildungswissenschaftliche Fakultät Institut für Musikwissenschaft und Medienwissenschaft Masterarbeit zur Erlangung des akademischen Grades Master of Arts (M. A.) im Fach Medienwissenschaft Schnelle Transformationen Eine medienarchäologische und objektorientierte Untersuchung von Fourier-Transformationsalgorithmen Fast Transformations. A Media Archaeological and Object-Oriented Analysis of Fourier Transform Algorithms Eingereicht von: Johannes Maibaum [email protected] am 15. November 2016 in Berlin Tag der mündlichen Prüfung: 15. Dezember 2016 1. Gutachter: Prof. Dr. Wolfgang Ernst 2. Gutachter: Dr. Stefan Höltgen Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung-Nicht kom- merziell 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie http://creativecommons.org/licenses/by-nc/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA. Inhaltsverzeichnis 1 Einleitung 1 2 Die Frage nach dem Algorithmus 7 3 Objektorientierte Ontologie 18 3.1 Perspektivwechsel: System- und Grundoperationen .............. 23 3.2 Philosophisches „Zimmern“: Bogosts Carpentry ................ 30 4 Die Fourier-Transformation 40 4.1 Das Problem der schwingenden Saite ...................... 41 4.2 Fouriers Algorithmus zur Koeffizientenbestimmung .............. 48 4.3 Eine Grundoperation in Fouriers Algorithmus ................. 55 4.4 Modulationen im Gehör und im Radio ...................... 61 5 Die schnelle Fourier-Transformation 73 5.1 Algorithmische Beschleunigungen ........................ 79 5.2 Divide and Conquer ................................ 90 6 Fazit 103 Abbildungsverzeichnis 110 Literaturverzeichnis 112 1 Einleitung Unter dem Namen Digital Humanities wird seit einigen Jahren ein Forschungszweig eta- bliert, dessen Protagonisten – Geisteswissenschaftler und Informatiker – sich die Fähigkei- ten von Digitalcomputern zunutze machen wollen, um kulturwissenschaftliche Analysen auf den technomathematischen Stand der Dinge zu bringen. Dazu werden Algorithmen auf rie- sige Datensätze kultureller Güter wie Bilder, Comics, Filme oder Klänge angesetzt, um einen vollständigeren Überblick zu erlangen, als es die menschliche Lebenserwartung und Analy- sefähigkeit erlauben würde: If Google can analyse billions of Web pages and over a trillion links several times each day, we should be able to do better than simply consider a handful of images and generalize fromthem – even if we don’t have the same resources. […] Instead of being fuzzy and blurred, our horizon (knowledge of a cultural field as a whole) can become razor sharp and at the same time aquirea new depth (being able to sort and cluster millions of artifacts along multiple dimensions).1 Diesem Enthusiasmus stehen andere Stimmen aus der Kulturwissenschaft gegenüber, die sich gerade angesichts der eingesetzten Algorithmen skeptisch äußern und warnen, dass al- gorithmische Akteure vermeintlich unbemerkt klassische geisteswissenschaftliche Arbeits- kraft ersetzen.2 Eine differenziertere Position nimmt hingegen Katherine Hayles ein, die schreibt, dass „the tension between algorithmic analysis and hermeneutic close reading“ – der angenommene Unterschied zwischen menschlich interpretierendem und algorithmi- schem, mathematisch kalkulierendem Lesen – „should not be overstated. Very often the rela- tionship is configured not so much as an opposition as a synergetic interaction.“3 Die Digital Humanities sollten demnach die Stärken von Menschen und Algorithmen gewinnbringend kombinieren. 1 Lev Manovich. „How to Compare One Million Images?“ In: Understanding Digital Humanities. Hrsg. von David Michael Berry. Houndmills und New York: Palgrave Macmillan, 2012, S. 249–278, hier S. 252. 2 Mit der Beobachtung, dass „Algorithmen einen Spielbericht über ein kleines Baseball-Team aus Illinois […] verfasst hatten“, beginnt z. B. die essayistische Untersuchung von Mercedes Bunz. Die stille Revolution. Wie Algorithmen Wissen, Arbeit, Öffentlichkeit und Politik verändern, ohne dabei viel Lärm zu machen. Berlin: Suhrkamp, 2012, S. 11. 3 Nancy Katherine Hayles. „How We Think: Transforming Power and Digital Technologies“. In: Understand- ing Digital Humanities. Hrsg. von David Michael Berry. Houndmills und New York: Palgrave Macmillan, 2012, S. 42–66, hier S. 48. 1 Dieses vielschichtige Verhältnis der Digital Humanities zu Algorithmen stellt die Medi- entheorie vor die Aufgabe, algorithmisches Wirken tiefergehender zu analysieren. Dieser Problematik nähert sich die vorliegende Arbeit mittels einer spezifischen Methode: „Medi- enarchäologie hat […] die Genealogie jener Apparaturen zum Gegenstand, die jenseits der Hermeneutik – parergonal – an Bildern und Texten am Werk sind; […].“4 So als zu untersu- chende, medienarchäologische Apparaturen verstanden, stehen zwei Algorithmen im Fokus dieser Arbeit: die Fourier-Transformation und ihre „schnelle“ Variante, die fast Fourier trans- form oder kurz FFT. Diese Auswahl hat zwei Gründe. Erstens ist die Fourier-Transformation ein Paradebeispiel für jene Analysealgorithmen, die auch in den Digital Humanities zum Einsatz kommen. In der digitalen Signalverarbei- tung (DSP) gelingt es mit ihrer Hilfe, Zeitsignale in ein Frequenzspektrum zu transformie- ren oder umgekehrt zu einem gegebenen Spektrum ein entsprechendes Zeitsignal zu erzeu- gen. Zeitsignale sind der genuine output klassischer technischer Medien wie beispielsweise dem Radio oder dem Fernsehen: kontinuierlich variierende, meist elektrische Spannungen, die an Lautsprechern oder Bildröhren in für menschliche Ohren hörbare Klänge und für menschliche Augen sichtbare, bewegte oder unbewegte Bilder transformiert werden kön- nen. Das Zusammengesetztsein dieser Zeitsignale aus manchmal unendlich vielen einzelnen sinusförmigen Grundschwingungen unterschiedlicher Frequenz, eben jenes Spektrum, ist menschlichen Sinnesorganen in der Regel nicht zugänglich. Erreichbar ist diese Auflösung in Schwingungsanteile jedoch auf einem mathematischem Weg, den Fourier-Transformatio- nen zu beschreiten erlauben. Mit der Zeit- und der Frequenzanalyse sind die zwei techno- mathematischen Methoden kommunikationstheoretischer Signalanalyse aufgezählt, die zur Mitte des 20. Jahrhunderts, kurz nach Ende des Zweiten Weltkriegs, bekannt sind: „Hitherto, communication theory was based on two alternative methods of signal analysis. One is the description of the signal as a function of time; the other is Fourier analysis.“5 Fourier-Trans- formationen verarbeiten Informationen im Sinne Claude Shannons – kontinuierliche Signa- le oder diskrete Daten6 – und übersetzen oder übertragen sie bidirektional zwischen den zwei Darstellungsweisen, dem Zeit- und dem Frequenzbereich. Fourier-Transformationen 4 Wolfgang Ernst. Das Gesetz des Gedächtnisses. Medien und Archive am Ende (des 20. Jahrhunderts). Berlin: Kadmos, 2007, S. 32. 5 Dennis Gábor. „Theory of Communication“. In: Journal of the Institution of Electrical Engineers 93.26 (Nov. 1946), S. 429–457, hier S. 429. 6 Diese Unterscheidung trennt die beiden Teile seiner mathematischen Kommunikationstheorie: „In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.“ Claude Elwood Shannon. „A Mathematical Theory of Communication“. In: Bell System Technical Journal 27.3/4 (Juli/Okt. 1948), S. 379–432, 623–656, hier S. 623. 2 sind demnach „Medientechnologien“ ganz nach Friedrich Kittlers technischer Definition.7 Zweitens ist „the Fourier transformation [sic …] continuously an important reference point for German media archaeologists“.8 So taucht sie etwa in Arbeiten von Kittler, Bernhard Siegert und Wolfgang Ernst auf. Diese drei Theoretiker eint der Ansatz, mithilfe der Fourier- Transformation – in Siegerts Worten – einen „Riß […] im Denken der Repräsentation“ zu umschreiben, den schon erwähnten Unterschied zwischen dem Kontinuierlichen oder dem Analogen und dem Diskreten oder dem Digitalen.9 Siegert setzt diesen Riss historisch im 18. und 19. Jahrhundert an, in der Zeit als der französische Mathematiker Jean Baptiste Joseph Fourier sein Kalkül entwickelte: Seit Fourier […] hört das Rauschen des Meeres auf, die Grenze der Analyse (des Wahrnehmbaren und des Sagbaren) zu bezeichnen; mit Fourier werden unendliche Summen von Oszillationen zum Medium der Analyse selbst. Die Analyse operiert nun nicht mehr über dem Abgrund des Realen als dem Reich des Nichtrepräsentierbaren, sondern im Realen/Reellen. Fouriers Analyse macht nicht mehr wie Leibniz’ Analyse vor dem Unbewußten als dem Ununterscheidbaren halt, sie begibt sich vollständig hinein.10 Mithilfe der Fourier-Transformation wird erstmals der gesamte Bereich real auftretender Si- gnale nach der Zeit und der Frequenz mathematisch analysierbar und somit Teil des Archivs, des Aussagbaren, wie es Michel Foucault definiert.11 Und dies sowohl in kontinuierlichen als auch in diskreten Frequenzspektren. Zur Unterscheidung dieser beiden Fälle wird in der Ma- thematik zwischen Fourier-Transformationen und Fourier-Reihen differenziert, die beide von Fourier entwickelt wurden.12 Erstere transformieren eine kontinuierliche Zeit-Funktion in ein unendliches, kontinuierliches Spektrum, letztere eine kontinuierliche Zeit-Funktion in ein ebenso unendliches, aber diskretes Spektrum harmonischer Frequenzen.13 In der folgenden Arbeit ist, wenn von der klassischen Fourier-Transformation die Rede ist,
Recommended publications
  • James Clerk Maxwell
    James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • From Counting to Quaternions -- the Agonies and Ecstasies of the Student Repeat Those of D'alembert and Hamilton
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Keck Graduate Institute Journal of Humanistic Mathematics Volume 1 | Issue 1 January 2011 From Counting to Quaternions -- The Agonies and Ecstasies of the Student Repeat Those of D'Alembert and Hamilton Reuben Hersh University of New Mexico Follow this and additional works at: https://scholarship.claremont.edu/jhm Recommended Citation Hersh, R. "From Counting to Quaternions -- The Agonies and Ecstasies of the Student Repeat Those of D'Alembert and Hamilton," Journal of Humanistic Mathematics, Volume 1 Issue 1 (January 2011), pages 65-93. DOI: 10.5642/jhummath.201101.06 . Available at: https://scholarship.claremont.edu/jhm/vol1/ iss1/6 ©2011 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. From Counting to Quaternions { The Agonies and Ecstasies of the Student Repeat Those of D'Alembert and Hamilton Reuben Hersh Department of Mathematics and Statistics, The University of New Mexico [email protected] Synopsis Young learners of mathematics share a common experience with the greatest creators of mathematics: \hitting a wall," meaning, first frustration, then strug- gle, and finally, enlightenment and elation.
    [Show full text]
  • An Idle, Unpopular Student
    CHAPTER THREE An Idle, Unpopular Student SLEEPLESS he lay beneath a blanket in the cockpit of the yacht, under the wide and starry sky spread seamlessly from horizon to horizon. Nothing obtruded to betray the presence of 19th‐century man, beyond the small wooden island with sails carrying the 37‐year‐old Louis across the greatness of the Pacific towards the archipelago of the Paumotus. In the glow of the binnacle lamp he could see the silhouette of the helmsman, guiding them towards a tiny tuft of palms and a coastline so low it was almost submerged, like the islands in the milk of Louis’s porridge all those years ago. The Pacific night around him now was warm as milk . and all of a sudden I had a vision of ‐ Drummond Street. It came on me like a flash of lightning: I simply returned thither, and into the past. And when I remember all I hoped and feared as I pickled about Rutherford’s in the rain and the east wind; how I feared I should make a mere shipwreck, and yet timidly hoped not; how I feared I should never have a friend, far less a wife, and yet passionately hoped I might; how I hoped (if I did not take to drink) I should possibly write one little book, etc. etc. And then now ‐ what a change! I feel somehow as if I should like the incident set upon a brass plate at the corner of that dreary thoroughfare for all students to read, poor devils, when their hearts are down.1 THE officious clanging of the bell summoned students from the Pump, as they called Rutherford’s tavern in Drummond Street, a stone’s throw from the great Playfair arch that gave access to the quadrangle of the university.
    [Show full text]
  • The Scottish Irish Mathematical Trail: People, Places, Practices
    BSHM-CSHPM/SCHPM Conference at St Andrews The Scottish Irish Mathematical Trail: People, Places, Practices Colm Mulcahy, Spelman College, Atlanta, GA, USA www.mathsireland.ie 14 July 2021 ABSTRACT We survey about 65 of the mathematical people with educational or career ties to both Scotland and Ireland, going back to the 1760s. The scope is broad, included pure and applied maths, astronomy, theoretical physics, maths physics, and statistics. From James & William Thomson and Alice Everitt in distant times, to Philip Gormley, Sheila Tinney, Murray McBeath, Andrew Young, and Alisdair Wood from the past century, we’ll explore many maths connections between Scotland and Ireland. Additional people (and all in more detail) can be found at the new blog at www.mathsireland.ie. Travellers on the Scottish Irish mathematical trail A panorama covering over 250 years Includes mathematical people with educational or career ties to Scotland and Ireland, going back to the 1760s. It’s very broad in scope, included pure and applied maths, astronomy, theoretical physics, maths physics, stats, etc. Travellers on the Scottish Irish mathematical trail Most obviously, we include: 1. Irish scholars who went to Scotland for education and/or employment: from James & William Thomson in the 1800s, to Liam O’Carroll and George Gettingby in modern times. 2. Scottish scholars who went to Ireland for similar reasons: from Peter Tait, George Slesser, and Charles Niven in the 1800s, to Gordon Lessells and Alastair Wood more recently. 3. People from elsewhere who spent significant stretches of time (3 or more years) in both countries: e.g., Joseph Everett, Edmund Whittaker, and Andrew Young.
    [Show full text]
  • Quaternions: a History of Complex Noncommutative Rotation Groups in Theoretical Physics
    QUATERNIONS: A HISTORY OF COMPLEX NONCOMMUTATIVE ROTATION GROUPS IN THEORETICAL PHYSICS by Johannes C. Familton A thesis submitted in partial fulfillment of the requirements for the degree of Ph.D Columbia University 2015 Approved by ______________________________________________________________________ Chairperson of Supervisory Committee _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Program Authorized to Offer Degree ___________________________________________________________________ Date _______________________________________________________________________________ COLUMBIA UNIVERSITY QUATERNIONS: A HISTORY OF COMPLEX NONCOMMUTATIVE ROTATION GROUPS IN THEORETICAL PHYSICS By Johannes C. Familton Chairperson of the Supervisory Committee: Dr. Bruce Vogeli and Dr Henry O. Pollak Department of Mathematics Education TABLE OF CONTENTS List of Figures......................................................................................................iv List of Tables .......................................................................................................vi Acknowledgements .......................................................................................... vii Chapter I: Introduction ......................................................................................... 1 A. Need for Study ........................................................................................
    [Show full text]
  • The Vortex Theory of Atoms — Pinnacle of Classical Physics —
    The Vortex Theory of Atoms — pinnacle of classical physics — Thesis for the master’s degree in History and Philosophy of Science, by Steven van der Laan1 Supervisor: Dr. Jeroen van Dongen Institute for History and Foundations of Science Utrecht University December 2012 [email protected] i Abstract Investigation into a nineteenth century atomic theory that assumed atoms to be vortices in an ether. Originally an idea of Kelvin, the vortex atom theory enjoyed great popularity in England, roughly form 1870 to 1890. In this thesis, the popular- ity of the vortex atom theory is explained through four values in nineteenth century English physics. Furthermore, it will be argued that the (surprising) fact that the theory was virtually ignored by German scientists can be explained by a German critical attitude towards scientific theories. An attitude that was a reaction to the Romantic philosophy of Naturphilosophie. Acknowledgements Without the support of my supervisor, Jeroen van Dongen, this masterthesis would have been nothing of what it is in its current form. Not only did he teach me a lot about doing history of science and writing academic texts in general, he also broke my habit of cutting corners while doing research. I am furthermore always thankful for Sylvia and Arjo, for they made everything possible. ii Contents 1 Introduction to the vortex theory of atoms 1 1.1 Etherandatoms ................................... 1 1.2 ThevortextheoryofKelvin ............................ 2 1.3 Historyofthevortextheoryofatoms . ..... 3 1.4 Researchquestion.................................. 10 2 The Vortex Theory of Atoms 12 2.1 Propertiesofgasesandmolecules . ... 12 2.2 Requirementsmadetoatoms . .. .. 13 2.3 Vortextheoryofgases .............................. .. 16 2.4 Vortextheoryforchemistry .
    [Show full text]
  • The Culture of Quaternions the Phoenix Bird of Mathematics
    The Culture of Quaternions The Phoenix Bird of Mathematics Herb Klitzner June 1, 2015 Presentation to: New York Academy of Sciences, Lyceum Society © 2015, Herb Klitzner http://quaternions.klitzner.org The Phoenix Bird CONTENTS 1. INTRODUCTION - new uses after a long period of neglect 2. HISTORY AND CONTROVERSIES – perceptions of quaternions 3. APPLICATIONS – advantages; how quaternions operate 4. MATH – nature of quaternions 5. MUSIC COGNITION AND 4D – potential for new uses of quaternions Introduction The Word “Quaternion” • The English word quaternion comes from a Latin word quaterni which means grouping things “four by four.” • A passage in the New Testament (Acts 12:4) refers to a Roman Army detachment of four quaternions – 16 soldiers divided into groups of four, who take turns guarding Peter after his arrest by Herod. So a quaternion was a squad of four soldiers. • In poetry, a quaternion is a poem using a poetry style in which the theme is divided into four parts. Each part explores the complementary natures of the theme or subject. [Adapted from Wikipedia] • In mathematics, quaternions are generated from four fundamental elements (1, i, j, k). • Each of these four fundamental elements is associated with a unique dimension. So math quaternions are, by nature, a 4D system. Introduction The Arc of Dazzling Success and Near-Total Obscurity Quaternions were created in 1843 by William Hamilton. Today, few contemporary scientists are familiar with, or have even heard the word, quaternion. (Mathematical physics is an exception.) And yet -- • During the 19th Century quaternions became very popular in Great Britain and in many universities in the U.S.
    [Show full text]
  • Shaping Space Exploring Polyhedra in Nature, Art, and the Geometrical Imagination
    Shaping Space Exploring Polyhedra in Nature, Art, and the Geometrical Imagination Marjorie Senechal Editor Shaping Space Exploring Polyhedra in Nature, Art, and the Geometrical Imagination with George Fleck and Stan Sherer 123 Editor Marjorie Senechal Department of Mathematics and Statistics Smith College Northampton, MA, USA ISBN 978-0-387-92713-8 ISBN 978-0-387-92714-5 (eBook) DOI 10.1007/978-0-387-92714-5 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013932331 Mathematics Subject Classification: 51-01, 51-02, 51A25, 51M20, 00A06, 00A69, 01-01 © Marjorie Senechal 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publishers location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Da Força Ao Tensor: Evolução Do Conceito Físico E Da Representação Matemática Do Campo Eletromagnético
    DA FORÇA AO TENSOR: EVOLUÇÃO DO CONCEITO FÍSICO E DA REPRESENTAÇÃO MATEMÁTICA DO CAMPO ELETROMAGNÉTICO Cibelle Celestino Silva Orientador: Prof. Dr. Roberto de Andrade Martins Tese apresentada ao Instituto de Física Gleb Wataghin - UNICAMP para obtenção do grau de Doutor em Ciências. Campinas, 11 de outubro de 2002. Para Francisca e Francisco, minhas raízes e frutos. iii AGRADECIMENTOS Ao Professor Roberto Martins pela confiança, dedicação, paciência, estímulo e por tudo que tenho aprendido nesses anos de convivência. Ao Luciano pelo seu amor e companheirismo. À minha família por todo o amor e alegria. A todos os amigos e colegas que de alguma maneira ou outra estiveram ao meu lado nesta caminhada. E finalmente agradeço à FAPESP pelo apoio financeiro. iv Resumo: O objetivo deste trabalho é estudar o desenvolvimento paralelo dos conceitos físicos e do formalismo matemático usado para descrever o conhecimento eletromagnético no século XIX e início do século XX. Este estudo considera questões como os modelos de éter usados para descrever o campo eletromagnético, a simetria associada com os campos, as dimensões das grandezas físicas. Estudamos também a escolha entre o cálculo de quatérnions e vetores e o desenvolvimento do formalismo quadridimensional como a melhor maneira de descrever os fenômenos eletromagnéticos. Abstract: The aim of this work is to study the parallel development of the physical concepts and the mathematical formalism used to describe the electromagnetic knowledge in nineteenth and early twentieth century. This study takes into account issues such as the ether models used to describe the electromagnetic field, the symmetries associated with the fields, the dimensions of physical quantities.
    [Show full text]
  • James Clerk Maxwell James Clerk Maxwell His Life and His Faith His Life His Faith
    James Clerk Maxwell James Clerk Maxwell His Life and His Faith His Life His Faith Dr. George W Benthien August 31, 2009 Email: [email protected] Contents Introduction 2 Biographical Sketch 4 Maxwell’s Faith 10 Maxwell’s Science 18 Geometry ....................................... 18 Color Theory ..................................... 19 Saturn’s Rings .................................... 21 The Kenetic Theory of Gases ............................ 22 Maxwell’s Demon .................................. 23 Electromagnetic Equations .............................. 24 Other Contributions ................................. 27 Appendix A: Maxwell’s Color Model 28 Appendix B: Electromagnetic Wave Equations 31 References 32 1 Introduction James Clerk Maxwell (1831–1879) In the history of physics there are three individuals who stand out above all others. They are Isaac Newton, James Clerk Maxwell, and Albert Einstein. Each of these men dramatically changed the way we look at the physical world — Isaac Newton with his laws of motion, James Clerk Maxwell with his electro-magnetic equations, and Albert Einstein with his theories of relativity. The names of Newton and Einstein are well known to the general public, but for some reason James Clerk Maxwell is not well known outside scientific circles. This is unfortunate since many of the devices we depend on today can be traced back to his pioneering work. These include radios, televisions, microwave ovens, and cell phones among many others. Maxwell’s equations united all the prior results of Faraday, Volta, Amp`ere, Oersted, Henry and others in electricity and magnetism. Maxwell not only developed these fundamental equations, but used them to predict the existence of electromagnetic waves (radio and TV waves for exam- ple) and to show that light is an electromagnetic wave.
    [Show full text]
  • James Clerk Maxwell: Una Celebración a 175 Años De Su Nacimiento
    Universidad Católica, Facultad de Física Charla, Academia Chilena de Ciencias. James Clerk Maxwell: Una celebración a 175 años de su nacimiento. Rafael Benguria, Miércoles 27 de Septiembre, 2006. Bosquejo 1. Biografía 2. Trayectoria Académica 3. Principales Descubrimientos Científicos: - Los Anillos de Saturno. - El Campo Electromagnético - Visión en Colores - Teoría Cinética de Gases. - Contribuciones a Ingeniería. 4. Otros. EDINBURGO, 1830’s: Maxwell nació en esta casa en 14 India Street, el 13 de Junio De 1831. Edinburgh Academy Heriot Row 14 India Street Hoy la casa de Maxwell es la sede de la “James Clerk Maxwell Foundation”, Un instituto de investigación en Física Matemática en la ciudad de Edinburgo. La entrada de la casa de James Clerk Maxwell en Edinburgo, tal como aparece hoy. Jane and Frances John Clerk Maxwell James Clerk Maxwell Cay Comedor Peter G. Tait (1831-1901). James Clerk Maxwell, niño, con su mamá, Frances Cay. El niño Maxwell. He is a very happy man, and has improved much since the weather got moderate; he has great work with doors, locks, keys etc., and 'Show me how it doos' is never out of his mouth. He also investigates the hidden course of streams and bell- wires, the way the water gets from the pond through the wall and a pend or small bridge and down a drain ... GLENLAIR HOUSE en 1880 Luego de haber sido arreglada y mejorada por James Clerk Maxwell in 1867 John Clerk Maxwell y su familia se trasladaron a Glenlair tan pronto Maxwell nació. La mamá de Maxwell, Frances Cay murió cuando su hijo tenía 8 años.
    [Show full text]
  • Spatial Pythagorean Hodographs, Quaternions, and Rotations in R
    Spatial Pythagorean hodographs, 3 4 quaternions, and rotations in R and R — a study in the evolution of scientific ideas — Rida T. Farouki Department of Mechanical & Aerospace Engineering, University of California, Davis — synopsis — • motivation — spatial Pythagorean-hodograph curves • background — Hamilton and the origin of quaternions • background — fundamentals of quaternion algebra • basic theory — unit quaternions and rotations in R3 • historical interlude — vectors versus quaternions • four dimensions — unit quaternions and rotations in R4 • any dimensions — Clifford algebra & medial axis transform — bibliography — • W. R. Hamilton, Lectures on Quaternions (1853), and posthumous Elements of Quaternions (1866) — extremely difficult reading • M. J. Crowe (1967), A History of Vector Analysis, Dover, New York — history of struggle between vectors & quaternions • S. L. Altmann (1986), Rotations, Quaternions, and Double Groups, Clarendon Press, Oxford — authoritative modern source • P. Du Val (1964), Homographies, Quaternions, and Rotations, Clarendon Press, Oxford — authoritative modern source • J. Roe (1993), Elementary Geometry, Oxford University Press — gentle introduction to quaternions • A. J. Hanson (2005), Visualizing Quaternions, Morgan Kaufmann — applications to computer graphics Z Z Z Z Z c Z b Z Z Z Z Z a a, b, c = real numbers p choose any a, b → c = a2 + b2 a, b, c = integers 8 2 2 < a = (u − v )w a2 + b2 = c2 ⇐⇒ b = 2uvw : c = (u2 + v2)w a(t), b(t), c(t) = polynomials 8 2 2 < a(t) = [ u (t) − v (t)] w(t) a2(t) + b2(t) ≡
    [Show full text]