Time and Tide

Total Page:16

File Type:pdf, Size:1020Kb

Time and Tide Time and Tide ... Like many others I suspect, I use the since every hour of time represents 15 summer to catch up on my reading. And this degrees of longitude. The ship therefore year I finally caught up with a book I meant must carry a clock set to time in the home to read some time ago and that is now out port and kept at that time as a benchmark to in paperback (and hence good for the compare with the 'on-board' local time. In beach): Longitude by Dava Sobel (4th order to win the prize, Harrison had to Estate, London, ISBN 1 85702 571 7). It is a measure longitude to within half a degree, story of inspiring vision and small-minded and this meant bUilding a ship's clock bigotry, fashioned around a heady brew of capable of maintaining time to a precision technology, politics, money and religion. that was quite unheard of in the early 18th century. It was normal for clocks of the time to be accurate to within 15 minutes in 24 The story centres on one of the biggest hours. Harrison's challenge was to build one technological problems of the 18th century - that did not gain or lose more than 3 how to know where you are at sea. It was seconds in 24 hours. easy enough to know one's N/S position (latitude) - by reading the angle of the sun at noon; but there was no way to ascertain It is a fascinating story and Harrison's with accuracy the EIW position (longitude). technical wizardry shines through it as he Prof Richard The problem was highlighted when Admiral moved from the original prototype H1 Kimbell Sir Clowdisley Shovell (what a fabulous (1737), through a series of refinements in name) was leading his small fleet of prize H2 (1741), H3 (1759), H4 (1760) and finally Technology ships, full of captured treasure, back to H5 (1770). In the process, and in pursuit of Education Research England after a series of skirmishes in the his personal Holy Grail, Harrison tackled Unit, Goldsmiths Mediterranean. Anxious to avoid coastal and cracked innumerable technical University of London rocks, Sir Clowdisley summoned all his difficulties, for example temperature navigators - who agreed that they were regulation, lubrication and balance. safely west of the Brittany peninsula. So they continued north into a foggy night and Changes of temperature as ships sailed on October 2nd 1707 Sir Clowdisley's from the Arctic to the Tropics created flagship - the Association - struck the Scilly havoc with the precision of movement of Isles. Shortly afterwards three of the four the clock mechanisms. It was Harrison other ships also struck the rocks and sank. who developed a bi-metal strip (brass Over 2,000 men and an astronomical and iron riveted together) and used it to quantity of treasure were lost. They thought enable the clock to adjust itself for they were out in the Atlantic well to the west temperature change. of any danger, and they paid a heavy price for their miscalculation. Having started life as a carpenter, Harrison's first solution to the problem of Spurred on by a catalogue of death and bearing surfaces was to use lignum destruction, and in particular the disaster of vitae, which exudes its own grease and Sir Clowdisley's fleet, Parliament finally therefore has a self lubricating quality. established the Longitude Act of 1714, Later he develop the caged ball-bearing which offered a prize of £20,000 to any whose smooth operation is central in so person able to provide a 'Practical and much machinery to this day. Useful' means of measuring longitude. Enter one unknown and largely self-educated clockmaker from Yorkshire - John Harrison. The clocks of Harrison's day all used pendulums to regulate their movement, but the pitching and rolling of a ship Harrison was confident that he could destroys the regular swing of the provide a solution based on accurate time- pendulum. Harrison developed a series keeping. He argued that all the navigator of ever more subtle springs and needed to know was the current time on escapements to replace the pendulum, board ship (from observation of the sun), which eventually allowed the and - simultaneously - the time at one's development of the chronometer. home port. The difference between these two times provides the EIW measurement But the story is not by any means all overcome his lack of formal education but technical. It is also - in parts - hilarious and he also battled for years to overcome the sad, particularly in the context of the technical difficulties that littered his path. competing theories that existed for And then he battled for more years to gain determining longitude (of which there were acceptance for his design against sceptical many given the value of the prize). The authority. No-one succeeds at design and Wounded Dog theory for example - technology without staying power. Ask proposed by Sir Kenelm Digby - relied on Dyson. the crazy idea that the yelping of wounded dogs could be made to signify noon in And then there is the gratifying triumph of London! the innovative practical man over the 'experts', the revered and incredibly well Somewhat less ludicrously, the Lunar resourced occupants of the Greenwich Distance Method was not an 18th century observatory - the high priests of the new contraceptive plan but was rather the source science of astronomy - who failed to of Harrison's major competition. It was the provide a 'Practical and Useful' solution to theory favoured by the official astronomers the problem because they were so wrapped of the day - perhaps because it provided up in their abstruse science that they failed them with endless lucrative employment. to think about the user - and make it The idea was that the movement of the useable. How often have we seen that in moon could be mapped against the whole our classrooms? The youngsters whose field of stars and result in star tables that imagination and innovation enables them to would allow the navigator to compare the design beyond the limits of their supposedly observed position of the moon from the ship 'brighter' peers or even of their teachers. to the position that the moon would be in Design and technology is a risk environment (say) London. Some highly complex with a delightfully iconoclastic tradition. mathematics was then needed to translate the difference between the two into a But the final resonating quirk in this story longitude position. Nevil Maskelyne, the concerns what we might call Mandelson's Astronomer Royal (in residence at the newly monument to the millennium. I have established Greenwich observatory) was watched with interest (from a wonderfully determined to undermine Harrison's clocks located pub overlooking the Thames at and sell his Nautical Almanac full of tightly Greenwich) as the 'Dome' has taken shape. packed astronomical data. Between 1765 It is (I think) an innovative and beautiful and 1811 he published 49 issues, and structure. I make no comment about its sailors around the world became used to the proposed contents - about which I know as tedious task of calculating their position little as most people. using it. Those sailors that did not have a Harrison chronometer had no real alternative and interestingly, it was through At one level the Dome might be seen as a this custom and practice that Greenwich monument to Maskelyne, in the sense that became the Prime Meridian - zero degrees his essentially inadequate solution to the of longitude. But Maskelyne's solution to the longitude problem none the less resulted in longitude problem was an astronomer's the Greenwich meridian fixing London as solution. Harrison's was a practical man's the datum from which the world is solution - and sea captains were practical measured. But at a more profound level, I men (Cook loved it). So as Harrison's prefer to see the dome as a monument to - famous chronometer became more and and a celebration of - the qualities that more available, Maskelyne's almanac enabled Harrison to lay a ruler around the became increasingly redundant - for sea earth. captains at least. Several things about this fascinating story resonate with me in terms of design and technology in schools. There is for example a plentiful measure of triumph over adversity, for not only did Harrison.
Recommended publications
  • Edwin Danson, UK: the Work of Charles Mason and Jeremiah Dixon
    The Work of Charles Mason and Jeremiah Dixon Edwin DANSON, United Kingdom Key words: Mason, Charles; Dixon, Jeremiah; Mason-Dixon Line; Pre-revolutionary History; Surveying; Geodesy; US History; Pennsylvania; Maryland. ABSTRACT The geodetic activities of Charles Mason and Jeremiah Dixon in America between 1763-68 were, for the period, without precedent. Their famous boundary dividing Maryland from Pennsylvania, the Mason-Dixon Line, today remains a fitting monument to these two brave, resourceful and extremely talented scientists. Tutored by Astronomer Royal Dr James Bradley, Charles Mason was aware of the contemporary theories and experiments to establish the true shape of the Earth. He was also cognisant of what was being termed “the attraction of mountains” (deviation of the vertical). However, at the time it was no more than a theory, a possibility, and it was by no means certain whether the Earth was solid or hollow. The Mason-Dixon Line, a line of constant latitude fifteen miles south of Philadelphia, although the most arduous of their tasks, was only part of their work for the proprietors of Maryland and Pennsylvania. For the Royal Society of London, they also measured the first degree of latitude in America. In recent years, the Mason-Dixon Line Preservation Partnership has located many of the original markers and surveyed them using GPS. The paper reviews the work of Mason and Dixon covering the period 1756-1786. In particular, their methods and results for the American boundary lines are discussed together with comments on the accuracy they achieved compared with GPS observations. CONTACT Edwin Danson 14 Sword Gardens Swindon, SN5 8ZE UNITED KINGDOM Tel.
    [Show full text]
  • Articles Articles
    Articles Articles ALEXI BAKER “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century Résumé Abstract On représente souvent les instruments scientifiques Early modern British “scientific” instruments, including du 18e siècle, y compris les chronomètres de précision, precision timekeepers, are often represented as static, comme des objets statiques, à l’état neuf et complets en pristine, and self-contained in 18th-century depictions eux-mêmes dans les descriptions des débuts de l’époque and in many modern museum displays. In reality, they moderne et dans de nombreuses expositions muséales were almost constantly in physical flux. Movement and d’aujourd’hui. En réalité, ces instruments se trouvaient changing and challenging environmental conditions presque constamment soumis à des courants physiques. frequently impaired their usage and maintenance, Le mouvement et les conditions environnementales especially at sea and on expeditions of “science” and difficiles et changeantes perturbaient souvent leur exploration. As a result, individuals’ experiences with utilisation et leur entretien, en particulier en mer et mending and adapting instruments greatly defined the lors d’expéditions scientifiques et d’exploration. Ce culture of technology and its use as well as later efforts sont donc les expériences individuelles de réparation at standardization. et d’adaptation des instruments qui ont grandement contribué à définir la culture de la technologie. In 1769, the astronomer John Bradley finally the calculation of the distance between the Earth reached the Lizard peninsula in Cornwall and the Sun. Bradley had not needed to travel with his men, instruments, and portable tent as far as many of his Transit counterparts, but observatory after a stressful journey.
    [Show full text]
  • Downloading Material Is Agreeing to Abide by the Terms of the Repository Licence
    Cronfa - Swansea University Open Access Repository _____________________________________________________________ This is an author produced version of a paper published in: Transactions of the Honourable Society of Cymmrodorion Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa40899 _____________________________________________________________ Paper: Tucker, J. Richard Price and the History of Science. Transactions of the Honourable Society of Cymmrodorion, 23, 69- 86. _____________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. http://www.swansea.ac.uk/library/researchsupport/ris-support/ 69 RICHARD PRICE AND THE HISTORY OF SCIENCE John V. Tucker Abstract Richard Price (1723–1791) was born in south Wales and practised as a minister of religion in London. He was also a keen scientist who wrote extensively about mathematics, astronomy, and electricity, and was elected a Fellow of the Royal Society. Written in support of a national history of science for Wales, this article explores the legacy of Richard Price and his considerable contribution to science and the intellectual history of Wales.
    [Show full text]
  • Digital Histories: Emergent Approaches Within the New Digital History (Pp
    CHAPTER 14 The Many Ways to Talk about the Transits of Venus Astronomical Discourses in Philosophical Transactions, 1753–1777 Reetta Sippola A Popular Astronomical Event In the 1760s, one of astronomy’s rarest predictable phenomena, the so-called Transit of Venus, was calculated to take place twice: in 1761 and in 1769. This phenomenon, when the planet Venus passes across the Sun, from the Earth’s vantage point, was not only extremely rare, as the previous transit had taken place in 1639 and the next was to follow in 1874, but also very valuable scien- tifically, as observing this kind of transit would make it possible to determine the distance between the Earth and the Sun more accurately than before. This could in turn make it easier to improve a number of practical issues relying on astronomical knowledge, foremost among them to improve the accuracy of calculating locations at sea, which at this time was at best inaccurate, often resulting in costly and deadly accidents. Thus, the two Transit of Venus events and the astronomical information that could be derived from observing them enjoyed wide interest among both scientific professionals and the general How to cite this book chapter: Sippola, R. (2020). The many ways to talk about the Transits of Venus: Astronomical discourses in Philosophical Transactions, 1753–1777. In M. Fridlund, M. Oiva, & P. Paju (Eds.), Digital histories: Emergent approaches within the new digital history (pp. 237–257). Helsinki: Helsinki University Press. https://doi.org/10.33134 /HUP-5-14 238 Digital Histories public. The scientific interest in the transits during the 18th century was rep- resented through a large number of news items and scientific reports in the scientific literature, especially in scientific periodicals, such as thePhilosophi - cal Transactions of the Royal Society of London.
    [Show full text]
  • Cavendish the Experimental Life
    Cavendish The Experimental Life Revised Second Edition Max Planck Research Library for the History and Development of Knowledge Series Editors Ian T. Baldwin, Gerd Graßhoff, Jürgen Renn, Dagmar Schäfer, Robert Schlögl, Bernard F. Schutz Edition Open Access Development Team Lindy Divarci, Georg Pflanz, Klaus Thoden, Dirk Wintergrün. The Edition Open Access (EOA) platform was founded to bring together publi- cation initiatives seeking to disseminate the results of scholarly work in a format that combines traditional publications with the digital medium. It currently hosts the open-access publications of the “Max Planck Research Library for the History and Development of Knowledge” (MPRL) and “Edition Open Sources” (EOS). EOA is open to host other open access initiatives similar in conception and spirit, in accordance with the Berlin Declaration on Open Access to Knowledge in the sciences and humanities, which was launched by the Max Planck Society in 2003. By combining the advantages of traditional publications and the digital medium, the platform offers a new way of publishing research and of studying historical topics or current issues in relation to primary materials that are otherwise not easily available. The volumes are available both as printed books and as online open access publications. They are directed at scholars and students of various disciplines, and at a broader public interested in how science shapes our world. Cavendish The Experimental Life Revised Second Edition Christa Jungnickel and Russell McCormmach Studies 7 Studies 7 Communicated by Jed Z. Buchwald Editorial Team: Lindy Divarci, Georg Pflanz, Bendix Düker, Caroline Frank, Beatrice Hermann, Beatrice Hilke Image Processing: Digitization Group of the Max Planck Institute for the History of Science Cover Image: Chemical Laboratory.
    [Show full text]
  • The Venus Transit: a Historical Retrospective
    The Venus Transit: a Historical Retrospective Larry McHenry The Venus Transit: A Historical Retrospective 1) What is a ‘Venus Transit”? A: Kepler’s Prediction – 1627: B: 1st Transit Observation – Jeremiah Horrocks 1639 2) Why was it so Important? A: Edmund Halley’s call to action 1716 B: The Age of Reason (Enlightenment) and the start of the Industrial Revolution 3) The First World Wide effort – the Transit of 1761. A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 4) The Second Try – the Transit of 1769. A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 5) The 19th Century attempts – 1874 Transit A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 6) The 19th Century’s Last Try – 1882 Transit - Photography will save the day. A: Countries and Astronomers involved B: What happened on Transit Day C: The Results 7) The Modern Era A: Now it’s just for fun: The AU has been calculated by other means). B: the 2004 and 2012 Transits: a Global Observation C: My personal experience – 2004 D: the 2004 and 2012 Transits: a Global Observation…Cont. E: My personal experience - 2012 F: New Science from the Transit 8) Conclusion – What Next – 2117. Credits The Venus Transit: A Historical Retrospective 1) What is a ‘Venus Transit”? Introduction: Last June, 2012, for only the 7th time in recorded history, a rare celestial event was witnessed by millions around the world. This was the transit of the planet Venus across the face of the Sun.
    [Show full text]
  • Philosophical Transactions (A)
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS (A) FOR THE YEAR 1889. A. A bney (W. de W.). Total Eclipse of the San observed at Caroline Island, on 6th May, 1883, 119. A bney (W. de W.) and T horpe (T. E.). On the Determination of the Photometric Intensity of the Coronal Light during the Solar Eclipse of August 28-29, 1886, 363. Alcohol, a study of the thermal properties of propyl, 137 (see R amsay and Y oung). Archer (R. H.). Observations made by Newcomb’s Method on the Visibility of Extension of the Coronal Streamers at Hog Island, Grenada, Eclipse of August 28-29, 1886, 382. Atomic weight of gold, revision of the, 395 (see Mallet). B. B oys (C. V.). The Radio-Micrometer, 159. B ryan (G. H.). The Waves on a Rotating Liquid Spheroid of Finite Ellipticity, 187. C. Conroy (Sir J.). Some Observations on the Amount of Light Reflected and Transmitted by Certain 'Kinds of Glass, 245. Corona, on the photographs of the, obtained at Prickly Point and Carriacou Island, total solar eclipse, August 29, 1886, 347 (see W esley). Coronal light, on the determination of the, during the solar eclipse of August 28-29, 1886, 363 (see Abney and Thorpe). Coronal streamers, observations made by Newcomb’s Method on the Visibility of, Eclipse of August 28-29, 1886, 382 (see A rcher). Cosmogony, on the mechanical conditions of a swarm of meteorites, and on theories of, 1 (see Darwin). Currents induced in a spherical conductor by variation of an external magnetic potential, 513 (see Lamb). 520 INDEX.
    [Show full text]
  • Lunar Distances Final
    A (NOT SO) BRIEF HISTORY OF LUNAR DISTANCES: LUNAR LONGITUDE DETERMINATION AT SEA BEFORE THE CHRONOMETER Richard de Grijs Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Email: [email protected] Abstract: Longitude determination at sea gained increasing commercial importance in the late Middle Ages, spawned by a commensurate increase in long-distance merchant shipping activity. Prior to the successful development of an accurate marine timepiece in the late-eighteenth century, marine navigators relied predominantly on the Moon for their time and longitude determinations. Lunar eclipses had been used for relative position determinations since Antiquity, but their rare occurrences precludes their routine use as reliable way markers. Measuring lunar distances, using the projected positions on the sky of the Moon and bright reference objects—the Sun or one or more bright stars—became the method of choice. It gained in profile and importance through the British Board of Longitude’s endorsement in 1765 of the establishment of a Nautical Almanac. Numerous ‘projectors’ jumped onto the bandwagon, leading to a proliferation of lunar ephemeris tables. Chronometers became both more affordable and more commonplace by the mid-nineteenth century, signaling the beginning of the end for the lunar distance method as a means to determine one’s longitude at sea. Keywords: lunar eclipses, lunar distance method, longitude determination, almanacs, ephemeris tables 1 THE MOON AS A RELIABLE GUIDE FOR NAVIGATION As European nations increasingly ventured beyond their home waters from the late Middle Ages onwards, developing the means to determine one’s position at sea, out of view of familiar shorelines, became an increasingly pressing problem.
    [Show full text]
  • “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18Th Century Alexi Baker
    Document generated on 09/29/2021 11:28 a.m. Material Culture Review “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century Alexi Baker Volume 74-75, 2012 Article abstract Early modern British “scientific” instruments, including precision timekeepers, URI: https://id.erudit.org/iderudit/mcr74_75art01 are often represented as static, pristine, and self-contained in 18th-century depictions and in many modern museum displays. In reality, they were almost See table of contents constantly in physical flux. Movement and changing and challenging environmental conditions frequently impaired their usage and maintenance, especially at sea and on expeditions of “science” and exploration. As a result, Publisher(s) individuals’ experiences with mending and adapting instruments greatly defined the culture of technology and its use as well as later efforts at standardization. National Museums of Canada ISSN 0316-1854 (print) 0000-0000 (digital) Explore this journal Cite this article Baker, A. (2012). “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century. Material Culture Review, 74-75, 14–29. All rights reserved © National Museums of Canada, 2011 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research.
    [Show full text]
  • GE 11A, 2014, Lecture 5 Spherical Structure of the Earth
    GE 11a, 2014, Lecture 5 Spherical structure of the earth The earth, ca. 1800 Nevil Maskelyne and the Schiehallion experiment (1774) Schiehallion (‘Sidh Chailleann’) Scotland Nevil Maskelyne doing his impression of Ben Franklin d F Ms m.g . 2 2 2 . 24 F = m g tan( ) = G m Ms/d ME = (RE /d ) (Ms/tan( )) ~ 6 10 kg . 2 R = 6.37.106 m; V = 1.1.1021 m3 m g = G m ME/RE E E ~ 5.5 g/cm2 (initially found ~ 4.5) Densities of common substances (all in g/cc) Ice 0.917 Water 1.000 Seawater 1.025 Graphite 2.200 Granite ~2.70 Titanium 4.507 Iron 7.870 Copper 8.960 Mercury 13.58 Gas: proportional to P/RT Two options: sub-equal mix of metal and rock or… an ideal gas, w/ high density at high P (B. Franklin) Mass distribution in earth’s interior Period of precession Moment of inertia Period of spin Torque (sun and moon trying to pull earth’s tidal bulge into plane of ecliptic) . 2 ri mi I = i mi ri Higher Earth has I much less than expected for homogeneous sphere Lower Kraemer, 1902 View combining known density, moment of inertia, oblateness, rigidity of surface rocks, and topography Note bad for a bunch of turn-of-the-century quacks! Focus “sample” outer ca. 200 km, but most energy in upper 10 km Mantle Core Seismograph S P A mechanical seismograph Anatomy of a seismic signal Minutes 0 10 20 30 40 50 Surface waves P S ‘Primary’ (first to arrive) ‘Secondary’ (second to arrive) measure the amplitude of the P S largest seismic Amplitude =23 mm wave… P-wave S-wave interval = 24 seconds …and the time interval between the P- and S-waves (I.e., the distance from the epicenter.
    [Show full text]
  • John Harrison (1693-1776) and the Heroics of Longitude
    DOI 10.6094/helden.heroes.heros./2014/02/09 Ulrike Zimmermann 119 John Harrison (1693-1776) and the Heroics of Longitude 1. A Symposium and a Rediscovery bestseller, and Dava Sobel embarked on a car­ eer as a well­known and respected author of 2 When American journalist Dava Sobel attended popular science books. the Longitude Symposium of Harvard Univer­ Dava Sobel’s first subject already was his­ sity at Cambridge, Massachusetts, in November tory, albeit part of an unaccountably hidden or 1993, she did not expect anything decisive to at least underrated history. John Harrison was a come out of either the conference or her attend­ carpenter and self­taught clockmaker, who was ance. “500 people from seventeen countries” born in Yorkshire and spent his early life in Bar­ came together to hold “a conference about the row­upon­Humber, North Lincolnshire. He would history of finding longitude at sea,” W. H. An­ prob ably have spent his life in obscur ity had he drewes, curator of the scientific instruments col­ not solved one of the major techno logical prob­ lec tion at Harvard, notes in his introduction to lems of his time, the problem of how to determine the conference proceedings (Andrewes, Intro­ a ship’s east­west position, its longitude, at sea. duction 1). Despite the sizable number of par­ Harrison has a firm place in the his tory of navi­ ticipants, the Longitude Symposium was at first gation, and would have been known amongs t sight a convention of specialists sharing their horologists, clock and watch makers, and nava l knowledge and discussing finer points of their historians.
    [Show full text]
  • William Dawes' Gravity Measurement in Sydney Cove, 1788
    William Dawes’ Gravity Measurement in Sydney Cove, 1788 Case BOSLOPER, Australia Key words : History of gravimetry, gravity, pendulum, Dawes. History of Surveying, physical geodesy, Australia. SUMMARY William Dawes arrived in Australia in January 1788 as an astronomer with the Australian First Fleet and as the Board of Longitude’s official observer. During his time in Australia he carried out many astronomical observations, of which the record has gone lost. The fieldbooks were possibly still with the widow of William Wales, of the Board of Longitude, after Wales died. What has not been lost are his gravity observations in Sydney Cove in Australia, of 1788, made with a temperature compensated grid iron pendulum, of which a record can be found in his correspondence with Nevil Maskelyne, the English Astronomer Royal. As far as I know, William Dawes’ pendulum gravity observations have not been published previously as such, until the recent paper by Morrison and Barko (2009). I helped investigate this series of observations which led to the first gravity acceleration determination on Australian soil, of which the record has survived. This paper reports on my analysis of his precision pendulum gravity determination. In this story, William Wales speaks from his grave, in support of Dawes. RESUMEN Guillermo Dawes llegaba a Australia en el Enero de 1788, como astrónomo con la Flota Primera Australiana y como el observador oficial del Consejo de la Longitud de la Inglaterra. Durante su tiempo en Australia el fue cargado con hacer muchos observaciones astronómicas, pero los libros de anotaciones fueran perdidos porque ellos todavía estaban posiblemente con la viuda de Guillermo Wales, del Consejo de la Longitud, después del muerte de Wales.
    [Show full text]