Retention of Induced Mutations in a Drosophila Reverse-Genetic Resource
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Detailed Review Paper on Retinoid Pathway Signalling
1 1 Detailed Review Paper on Retinoid Pathway Signalling 2 December 2020 3 2 4 Foreword 5 1. Project 4.97 to develop a Detailed Review Paper (DRP) on the Retinoid System 6 was added to the Test Guidelines Programme work plan in 2015. The project was 7 originally proposed by Sweden and the European Commission later joined the project as 8 a co-lead. In 2019, the OECD Secretariat was added to coordinate input from expert 9 consultants. The initial objectives of the project were to: 10 draft a review of the biology of retinoid signalling pathway, 11 describe retinoid-mediated effects on various organ systems, 12 identify relevant retinoid in vitro and ex vivo assays that measure mechanistic 13 effects of chemicals for development, and 14 Identify in vivo endpoints that could be added to existing test guidelines to 15 identify chemical effects on retinoid pathway signalling. 16 2. This DRP is intended to expand the recommendations for the retinoid pathway 17 included in the OECD Detailed Review Paper on the State of the Science on Novel In 18 vitro and In vivo Screening and Testing Methods and Endpoints for Evaluating 19 Endocrine Disruptors (DRP No 178). The retinoid signalling pathway was one of seven 20 endocrine pathways considered to be susceptible to environmental endocrine disruption 21 and for which relevant endpoints could be measured in new or existing OECD Test 22 Guidelines for evaluating endocrine disruption. Due to the complexity of retinoid 23 signalling across multiple organ systems, this effort was foreseen as a multi-step process. -
Mice Exposed to N-Ethyl-N-Nitrosourea T
Proc. Nati. Acad. Sci. USA Vol. 89, pp. 7866-7870, September 1992 Genetics Mutational spectrum at the Hprt locus in splenic T cells of B6C3F1 mice exposed to N-ethyl-N-nitrosourea T. R. SKOPEK*tt, V. E. WALKER*, J. E. COCHRANEt, T. R. CRAFTt, AND N. F. CARIELLO* *Department of Pathology and tDepartment of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Communicated by Kenneth M. Brinkhous, May 26, 1992 ABSTRACT We have determined the mutational spectrum quences for analysis. DGGE is based on the fact that the of N-ethyl-N-nitrosourea (ENU) in exon 3 of the hypoxanthine electrophoretic mobility of a DNA molecule in a polyacryl- guanine) phosphoribosyltransferase gene (Hprt) in splenic T amide gel is considerably reduced as the molecule becomes cells following in vivo exposure ofmale B6C3F1 mice (5-7 weeks partially melted (denatured). Mismatched heteroduplexes old) to ENU. Hpir mutants were isolated by culturing splenic formed by annealing wild-type and mutant DNA sequences T cells in microtiter dishes containing medium supplemented are always less stable than the corresponding perfectly base- with interleukin 2, concanavalin A, and 6-thiouanine. DNA paired homoduplexes and consequently melt at a lower was extracted from 6-thoa ne-sistant colonies and ampli- concentration of denaturant. Therefore, any mutant/wild- fied by the polymerase chain reaction (PCR) using primers type heteroduplex will always travel a shorter distance rel- flanking Hprt exon 3. Identification of mutant sequences and ative to wild-type homoduplexes in a gel containing a dient purification of mutant DNA from contaminating wild-type Hprt ofdenaturant. -
The Joy of Balancers
REVIEW The joy of balancers 1,2 3 4,5 Danny E. MillerID *, Kevin R. Cook , R. Scott HawleyID * 1 Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America, 2 Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington and Seattle Children's Hospital, Seattle, Washington, United States of America, 3 Department of Biology, Indiana University, Bloomington, Indiana, United States of America, 4 Stowers Institute for Medical Research, Kansas City, Missouri, United States of America, 5 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America * [email protected] (DEM); [email protected] (RSH) Abstract Balancer chromosomes are multiply inverted and rearranged chromosomes that are widely used in Drosophila genetics. First described nearly 100 years ago, balancers are used extensively in stock maintenance and complex crosses. Recently, the complete molecular a1111111111 structures of several commonly used balancers were determined by whole-genome a1111111111 sequencing. This revealed a surprising amount of variation among balancers derived from a a1111111111 a1111111111 common progenitor, identified genes directly affected by inversion breakpoints, and cata- a1111111111 loged mutations shared by balancers. These studies emphasized that it is important to choose the optimal balancer, because different inversions suppress meiotic recombination in different chromosomal regions. In this review, we provide a brief history of balancers in Drosophila, discuss how they are used today, and provide examples of unexpected recom- bination events involving balancers that can lead to stock breakdown. OPEN ACCESS Citation: Miller DE, Cook KR, Hawley RS (2019) The joy of balancers. -
Additional Miscellaneous Information About Drosophila
Supplemental handout Background on flies Spring, 2013 --------------------------------------------- Miscellaneous useful information about Drosophila A diploid Drosopihila melanogaster fruit fly has two sex chromosomes (XX in the female and XY in the male) and three pairs of autosomes, designated chromosomes 2, 3 and 4; the X is designated chromosome 1. Chromosome 4 is very small. The X is telocentric, meaning that the centromere is at one end. Centromeric heterochromatin is not amplified in polytene nuclei, and all polytene chromosomes are attached to the chromocenter (unamplified heterochromatin), so that a good squash of a polytene nucleus shows five arms extending from a central point. These arms are the euchromatic portions of X, 2L, 2R, 3L and 3R. The pattern of bands is reproducible, and Calvin Bridges devised a nomenclature for them in the 1930's. Each major chromosome arm is divided into 20 numbered sections (X = 1-20, 2L = 21-40, 2R = 41-60, 3L = 61-80, 3R = 81-100 and 4 = 101-102). Each numbered unit is divided into six lettered regions, A-F, and each letter into some number of bands, depending on what Bridges saw. The correlation of these polytene maps and cloned DNA can be accomplished by in situ hybridization, and polytene maps can be correlated with genetic maps based on recombination by testing for complementation between mutant alleles and cytologically visible deletions. A summary of such correlated information is available on Flybase and links available through Flybase. Genes are given a full name, like speck, and a symbol, like sp. In general, gene symbols are capitalized if the original allele was dominant. -
Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster Zane Bryant Coleman University of Mississippi
University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2018 Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster Zane Bryant Coleman University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the Biology Commons Recommended Citation Coleman, Zane Bryant, "Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster" (2018). Honors Theses. 978. https://egrove.olemiss.edu/hon_thesis/978 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. DETERMINATION OF THE CHROMOSOMAL POSITION OF THREE MUTATIONS USING RECOMBINATION MAPPING IN DROSOPHILA MELANOGASTER by Zane Bryant Coleman A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 2018 Approved by ____________________________________ Advisor: Dr. Bradley Jones ____________________________________ Reader: Dr. Joshua Bloomekatz ____________________________________ Reader: Dr. Colin Jackson Ó 2018 Zane Bryant Coleman ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS I would like to thank Dr. Jones for allowing me to work in his lab, mentoring me throughout my college career, and helping me during the research process. Through patience and understanding, Dr. Jones has molded me into a scientist capable of overcoming obstacles. I would also like to thank Drs. Bloomekatz and Jackson for participating as readers. -
Engineering New Balancer Chromosomes in C. Elegans Via
www.nature.com/scientificreports OPEN Engineering new balancer chromosomes in C. elegans via CRISPR/Cas9 Received: 19 May 2016 Satoru Iwata1, Sawako Yoshina1, Yuji Suehiro1, Sayaka Hori1 & Shohei Mitani1,2 Accepted: 02 September 2016 Balancer chromosomes are convenient tools used to maintain lethal mutations in heterozygotes. We Published: 21 September 2016 established a method for engineering new balancers in C. elegans by using the CRISPR/Cas9 system in a non-homologous end-joining mutant. Our studies will make it easier for researchers to maintain lethal mutations and should provide a path for the development of a system that generates rearrangements at specific sites of interest to model and analyse the mechanisms of action of genes. Genetic balancers (including inversions, translocations and crossover-suppressors) are essential tools to maintain lethal or sterile mutations in heterozygotes. Recombination is suppressed within these chromosomal rearrange- ments. However, despite efforts to isolate genetic balancers since 19781–5, approximately 15% (map units) of the C. elegans genome has not been covered6 (Supplementary Fig. 1). Because the chromosomal rearrangements gen- erated by gamma-ray and X-ray mutagenesis are random, it is difficult to modify specific chromosomal regions. Here, we used the CRISPR/Cas9 genome editing system to solve this problem. The CRISPR/Cas9 system has enabled genomic engineering of specific DNA sequences and has been successfully applied to the generation of gene knock-outs and knock-ins in humans, rats, mice, zebrafish, flies and nematodes7. Recently, the CRISPR/ Cas9 system has been shown to induce inversions and translocations in human cell lines and mouse somatic cells8–10. -
Identification and Characterization of Breakpoints and Mutations on Drosophila Melanogaster Balancer Chromosomes
G3: Genes|Genomes|Genetics Early Online, published on September 24, 2020 as doi:10.1534/g3.120.401559 1 Identification and characterization of breakpoints and mutations on Drosophila 2 melanogaster balancer chromosomes 3 Danny E. Miller*, Lily Kahsai†, Kasun Buddika†, Michael J. Dixon†, Bernard Y. Kim‡, Brian R. 4 Calvi†, Nicholas S. Sokol†, R. Scott Hawley§** and Kevin R. Cook† 5 *Department of Pediatrics, Division of Genetic Medicine, University of Washington, and Seattle 6 Children's Hospital, Seattle, WA, 98105 7 †Department of Biology, Indiana University, Bloomington, IN 47405 8 ‡Department of Biology, Stanford University, Stanford, CA 94305 9 §Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 10 Kansas City, KS 66160 11 **Stowers Institute for Medical Research, Kansas City, MO 64110 12 ORCIDs: 0000-0001-6096-8601 (D.E.M.), 0000-0003-3429-445X (L.K.), 0000-0002-9872-4765 13 (K.B.), 0000-0003-0208-0641 (M.J.D.), 0000-0002-5025-1292 (B.Y.K.), 0000-0001-5304-0047 14 (B.R.C.), 0000-0002-2768-4102 (N.S.S.), 0000-0002-6478-0494 (R.S.H.), 0000-0001-9260- 15 364X (K.R.C.) 1 © The Author(s) 2020. Published by the Genetics Society of America. 16 Running title: Balancer breakpoints and phenotypes 17 18 Keywords: balancer chromosomes, chromosomal inversions, p53, Ankyrin 2, 19 Fucosyltransferase A 20 21 Corresponding author: Kevin R. Cook, Department of Biology, Indiana University, 1001 E. 22 Third St., Bloomington, IN 47405, 812-856-1213, [email protected] 23 2 24 ABSTRACT 25 Balancers are rearranged chromosomes used in Drosophila melanogaster to maintain 26 deleterious mutations in stable populations, preserve sets of linked genetic elements and 27 construct complex experimental stocks. -
Molecular Analysis of Hprt Gene Mutations in Skin Fibroblasts of Rats Exposed in Vivo to N-Methyl-N-Nitrosourea Or N-Ethyl-N-Nitrosourea'
ICANCER RESEARCH54, 2478-2485, May 1, 19941 Molecular Analysis of hprt Gene Mutations in Skin Fibroblasts of Rats Exposed in Vivo to N-Methyl-N-nitrosourea or N-Ethyl-N-nitrosourea' Jacob G. Jansen,2 George it Mohn, Harry Vrieling, Come M. M. van Teijlingen, Paul H. M. Lohman, and Albert A. van Zeeland MGC-Department ofRadiation Genetics and Chemical Mutagenesis, State University ofLeiden, Wassenaarseweg 72, 2333 AL Leiden (J. G. J., H. V., C. M. M. v. T., P. H. M. L, A. A. v. Z.J; Laboratory of Carcinogenesis and Mutagenesis, National Institute of Public Health and Environmental Protection, Bilthoven [C. R. M.]; and J. A. Cohen Institute, Interuniversity Research Institute for Radiopathology and Radiation Protection, Leiden (H. V., A. A. v. Z.J, the Netherlands ABSTRACT apart from 06-guanine alkylation, MNU methylates preferentially the N-7 position of guanine and at a lower frequency the N-3 The granuloma pouch assay in the rat is a model system in which position of adenine, while ENU alkylates mostly phosphodiesters; relative frequencies of genetic and (pro-) neoplastic changes induced in vivo by carcinogenic agents can be determined within the same target and at lower frequencies the @2position of thymine and the N-7 tissue. The target is granuloma pouch tissue and consists of a population position of guanine. Ethylation by ENU at the N-3 position of of (transient) proliferating fibroblasts which can be cultured in vitro.hprt adenine, the 0― position of thymine, and the @2position of gene mutations were studied in granuloma pouch tissue of rats treated cytosine occurs at much lower frequencies. -
Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat
University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-12-2013 Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat Diseases Does Not Result from an Expression Feedback Loop Daniel Camacho University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Camacho, Daniel, "Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat Diseases Does Not Result from an Expression Feedback Loop" (2013). Honors Scholar Theses. 295. https://opencommons.uconn.edu/srhonors_theses/295 1 HONORS THESIS DIKAR-INDUCED SYNTHETIC LETHALITY IN A DROSOPHILA MODEL OF CAG REPEAT DISEASES DOES NOT RESULT FROM AN EXPRESSION FEEDBACK LOOP Presented by Daniel R. Camacho Department of Molecular and Cell Biology The University of Connecticut 2013 2 Abstract Human CAG repeat diseases manifest themselves through the common pathology of neurodeneration. This pathological link is attributed to the property shared by all nine of these diseases: an expanded polyglutamine (polyQ) tract. The most evident result of polyQ expansion is protein aggregation, and it is believed that this phenomenon is partly responsible for conferring cytotoxic properties on the mutated protein. Apart from sequestering the mutated protein, cellular aggregates are able to incorporate native proteins via polyQ-mediated aggregation, thus disrupting important cellular pathways. Using Drosophila melanogaster as a disease model, researchers have been able to compile collections of these so-called disease modifiers for most of the CAG repeat diseases. Moreover, a recently characterized Drosophila gene, Dikar, appears to synergistically react with polyQ-expanded proteins in an especially strong fashion, causing a synthetic lethal phenotype. -
Sequencing Chemically Induced Mutations in the Mutamouse Lacz
bioRxiv preprint doi: https://doi.org/10.1101/858159; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 SEQUENCING CHEMICALLY INDUCED MUTATIONS IN THE MUTAMOUSE LACZ 2 REPORTER GENE IDENTIFIES HUMAN CANCER MUTATIONAL SIGNATURES 3 4 Marc A. Beal1,4*, Matt J. Meier2*, Danielle LeBlanc1, Clotilde Maurice1, Jason O’Brien3, Carole L. 5 Yauk1, Francesco Marchetti1,5 6 7 *These authors contributed equally to this work. 8 1Environmental Health Science and Research Bureau, Healthy Environments and Consumer 9 Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada. 10 2Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario, 11 K1A 0H3, Canada. 12 3National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, 13 K1A 0H3, Canada. 14 4Present address: Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, 15 Ontario, Canada 16 5Corresponding author: [email protected] 17 18 Other email addresses: [email protected], [email protected], 19 [email protected], [email protected], [email protected], 20 [email protected] 21 22 Running title: Induced lacZ mutations and human cancer signatures 1 bioRxiv preprint doi: https://doi.org/10.1101/858159; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
N-Nitroso-N-Ethylurea
Right to Know Hazardous Substance Fact Sheet Common Name: N-NITROSO-N-ETHYLUREA Synonyms: ENU; N-Ethyl-N-Nitrosourea CAS Number: 759-73-9 Chemical Name: Urea, N-Ethyl-N-Nitroso- RTK Substance Number: 1410 Date: April 2002 Revision: October 2009 DOT Number: UN 3077 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE N-Nitroso-N-Ethylurea is a light yellow powder or yellow-pink Hazard Summary crystal. It is used in tumor research and to make other Hazard Rating NJDOH NFPA chemicals. HEALTH 3 - FLAMMABILITY 1 - REACTIVITY 1 - CARCINOGEN TERATOGEN POISONOUS GASES ARE PRODUCED IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; f N-Nitroso-N-Ethylurea is on the Right to Know Hazardous 4=severe Substance List because it is cited by DOT, NTP, DEP, IARC and EPA. f N-Nitroso-N-Ethylurea can affect you when inhaled. f This chemical is on the Special Health Hazard Substance f N-Nitroso-N-Ethylurea is a CARCINOGEN and MUTAGEN, List. and may be a TERATOGEN. HANDLE WITH EXTREME CAUTION. f Contact can irritate the skin and eyes. f Inhaling N-Nitroso-N-Ethylurea can irritate the nose and throat. f Exposure can cause headache, dizziness, and lightheadedness. SEE GLOSSARY ON PAGE 5. f N-Nitroso-N-Ethylurea may affect the liver and kidneys. FIRST AID Eye Contact Workplace Exposure Limits f Immediately flush with large amounts of water for at least 15 No occupational exposure limits have been established for minutes, lifting upper and lower lids. Remove contact N-Nitroso-N-Ethylurea. -
N-Ethyl-N-Nitrosourea Induced Leukaemia in a Mouse Model Through Upregulation of Vascular Endothelial Growth Factor and Evading Apoptosis
cancers Article N-Ethyl-n-Nitrosourea Induced Leukaemia in a Mouse Model through Upregulation of Vascular Endothelial Growth Factor and Evading Apoptosis Abdullahi Aliyu 1,2,* , Mohd Rosly Shaari 3, Nurul Syahirah Ahmad Sayuti 1, Mohd Farhan Hanif Reduan 1, Shanmugavelu Sithambaram 3, Mustapha Mohamed Noordin 1, Khozirah Shaari 4 and Hazilawati Hamzah 1,* 1 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; [email protected] (N.S.A.S.); [email protected] (M.F.H.R.); [email protected] (M.M.N.) 2 Department of Veterinary Pathology, Faculty of Veterinary Medicine, City Campus Complex, Usmanu Danfodiyo University, 840212 Sokoto, Sokoto State, Nigeria 3 Animal Science Research Centre, Malaysian Agricultural Research and Development Institute Headquarter, Serdang 43400, Selangor, Malaysia; [email protected] (M.R.S.); [email protected] (S.S.) 4 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; [email protected] * Correspondence: [email protected] (A.A.); [email protected] (H.H.) Received: 17 December 2019; Accepted: 4 February 2020; Published: 13 March 2020 Abstract: Chemical carcinogens are commonly used to investigate the biology and prognoses of various cancers. This study investigated the mechanism of leukaemogenic effects of n-ethyl- n-nitrosourea (ENU) in a mouse model. A total of 14 3-week-old male Institute of Cancer Research (ICR)-mice were used for the study. The mice were divided into groups A and B with seven mice each. Group A served as the control while group B received intraperitoneal (IP) injections of 80 mg/kg ENU twice with a one-week interval and were monitored monthly for 3 months for the development of leukaemia via blood smear examination.