LECTURE 9: CHROMOSOMAL REARRANGEMENTS II Reading for This and Last Lecture: Ch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Epigenetic Control of Mammalian Centromere Protein Binding: Does DNA Methylation Have a Role?
Journal of Cell Science 109, 2199-2206 (1996) 2199 Printed in Great Britain © The Company of Biologists Limited 1996 JCS3386 Epigenetic control of mammalian centromere protein binding: does DNA methylation have a role? Arthur R. Mitchell*, Peter Jeppesen, Linda Nicol†, Harris Morrison and David Kipling MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK *Author for correspondence (internet [email protected]) †Present address: MRC Reproductive Biology Unit, Edinburgh, UK SUMMARY Chromosome 1 of the inbred mouse strain DBA/2 has a block of minor satellite DNA sequences on chromosome 1. polymorphism associated with the minor satellite DNA at The binding of the CENP-E protein does not appear to be its centromere. The more terminal block of satellite DNA affected by demethylation of the minor satellite sequences. sequences on this chromosome acts as the centromere as We present a model to explain these observations. This shown by the binding of CREST ACA serum, anti-CENP- model may also indicate the mechanism by which the B and anti-CENP-E polyclonal sera. Demethylation of the CENP-B protein recognises specific sites within the arrays minor satellite DNA sequences accomplished by growing of minor satellite DNA on mouse chromosomes. cells in the presence of the drug 5-aza-2′-deoxycytidine results in a redistribution of the CENP-B protein. This protein now binds to an enlarged area on the more terminal Key words: Centromere satellite DNA, Demethylation, Centromere block and in addition it now binds to the more internal antibody INTRODUCTION A common feature of many mammalian pericentromeric domains is that they contain families of repetitive DNA The centromere of mammalian chromosomes is recognised at sequences (Singer, 1982). -
The Joy of Balancers
REVIEW The joy of balancers 1,2 3 4,5 Danny E. MillerID *, Kevin R. Cook , R. Scott HawleyID * 1 Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America, 2 Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington and Seattle Children's Hospital, Seattle, Washington, United States of America, 3 Department of Biology, Indiana University, Bloomington, Indiana, United States of America, 4 Stowers Institute for Medical Research, Kansas City, Missouri, United States of America, 5 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America * [email protected] (DEM); [email protected] (RSH) Abstract Balancer chromosomes are multiply inverted and rearranged chromosomes that are widely used in Drosophila genetics. First described nearly 100 years ago, balancers are used extensively in stock maintenance and complex crosses. Recently, the complete molecular a1111111111 structures of several commonly used balancers were determined by whole-genome a1111111111 sequencing. This revealed a surprising amount of variation among balancers derived from a a1111111111 a1111111111 common progenitor, identified genes directly affected by inversion breakpoints, and cata- a1111111111 loged mutations shared by balancers. These studies emphasized that it is important to choose the optimal balancer, because different inversions suppress meiotic recombination in different chromosomal regions. In this review, we provide a brief history of balancers in Drosophila, discuss how they are used today, and provide examples of unexpected recom- bination events involving balancers that can lead to stock breakdown. OPEN ACCESS Citation: Miller DE, Cook KR, Hawley RS (2019) The joy of balancers. -
Additional Miscellaneous Information About Drosophila
Supplemental handout Background on flies Spring, 2013 --------------------------------------------- Miscellaneous useful information about Drosophila A diploid Drosopihila melanogaster fruit fly has two sex chromosomes (XX in the female and XY in the male) and three pairs of autosomes, designated chromosomes 2, 3 and 4; the X is designated chromosome 1. Chromosome 4 is very small. The X is telocentric, meaning that the centromere is at one end. Centromeric heterochromatin is not amplified in polytene nuclei, and all polytene chromosomes are attached to the chromocenter (unamplified heterochromatin), so that a good squash of a polytene nucleus shows five arms extending from a central point. These arms are the euchromatic portions of X, 2L, 2R, 3L and 3R. The pattern of bands is reproducible, and Calvin Bridges devised a nomenclature for them in the 1930's. Each major chromosome arm is divided into 20 numbered sections (X = 1-20, 2L = 21-40, 2R = 41-60, 3L = 61-80, 3R = 81-100 and 4 = 101-102). Each numbered unit is divided into six lettered regions, A-F, and each letter into some number of bands, depending on what Bridges saw. The correlation of these polytene maps and cloned DNA can be accomplished by in situ hybridization, and polytene maps can be correlated with genetic maps based on recombination by testing for complementation between mutant alleles and cytologically visible deletions. A summary of such correlated information is available on Flybase and links available through Flybase. Genes are given a full name, like speck, and a symbol, like sp. In general, gene symbols are capitalized if the original allele was dominant. -
Chromosomal Rearrangements Genetic Variation Alterationsalterations Inin Chromosomechromosome Structurestructure
chromosomal rearrangements Genetic variation AlterationsAlterations inin ChromosomeChromosome StructureStructure ! There are two primary ways in which the structure of chromosomes can be altered – 1. The total amount of genetic information in the chromosome can change " Decrease: Deficiencies/Deletions " Increase: Duplications & Insertions – 2. The genetic material may remain the same, but is rearranged " Inversions " Translocations PeCtoerp Jy.r Riguhsts e©llT, ihGee nMetciGcsr: aCwop-Hyriilgl hCt o©m Ppeaanriseosn, IEndcu.c Pateiromn,i sInsico.,n p ruebqliusihriendg faosr B reenpjarmodinu cCtuiomnm oirn gdsisplay 3 Chromosomal aberations/ rearrangements Chromosomal abberations/ rearrangements deletion Duplication Inversion translocation. Chromosomal abberations/ rearrangements • For chromosomal rearrangement to occur, there has to be two or more double-stranded breaks in the chromosomes of a cell. • DSBs are potentially lethal, unless they are repaired by repair enzymes. Chromosomal rearrangements • If the two ends of the same break are rejoined, the original DNA order is restored. • If the ends of two different breaks are joined together, results in a chromosomal rearrangement. • The only chromosomal rearrangements that survive meiosis are those that produce DNA molecules that have one centromere and two telomeres. • acentric chromosome: Without a centromere • Do not get dragged to either pole at anaphase of mitosis or meiosis Chromosomal • Are not incorporated into either progeny nucleus. rearrangements Therefore acentric chromosomes are not inherited. Chromosomal Re-arragements • Dicentric chromosome: With two centromere • pulled simultaneously to opposite poles at anaphase, forming an anaphase bridge. • Generally do not get incorporated into either progeny cell. • A chromosome lacking a telomere, cannot replicate properly Chromosomal • The larger the segment Re-arragements that is lost or duplicated, the more chance, that it will cause phenotypic abnormalities. -
Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster Zane Bryant Coleman University of Mississippi
University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2018 Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster Zane Bryant Coleman University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the Biology Commons Recommended Citation Coleman, Zane Bryant, "Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster" (2018). Honors Theses. 978. https://egrove.olemiss.edu/hon_thesis/978 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. DETERMINATION OF THE CHROMOSOMAL POSITION OF THREE MUTATIONS USING RECOMBINATION MAPPING IN DROSOPHILA MELANOGASTER by Zane Bryant Coleman A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 2018 Approved by ____________________________________ Advisor: Dr. Bradley Jones ____________________________________ Reader: Dr. Joshua Bloomekatz ____________________________________ Reader: Dr. Colin Jackson Ó 2018 Zane Bryant Coleman ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS I would like to thank Dr. Jones for allowing me to work in his lab, mentoring me throughout my college career, and helping me during the research process. Through patience and understanding, Dr. Jones has molded me into a scientist capable of overcoming obstacles. I would also like to thank Drs. Bloomekatz and Jackson for participating as readers. -
Engineering New Balancer Chromosomes in C. Elegans Via
www.nature.com/scientificreports OPEN Engineering new balancer chromosomes in C. elegans via CRISPR/Cas9 Received: 19 May 2016 Satoru Iwata1, Sawako Yoshina1, Yuji Suehiro1, Sayaka Hori1 & Shohei Mitani1,2 Accepted: 02 September 2016 Balancer chromosomes are convenient tools used to maintain lethal mutations in heterozygotes. We Published: 21 September 2016 established a method for engineering new balancers in C. elegans by using the CRISPR/Cas9 system in a non-homologous end-joining mutant. Our studies will make it easier for researchers to maintain lethal mutations and should provide a path for the development of a system that generates rearrangements at specific sites of interest to model and analyse the mechanisms of action of genes. Genetic balancers (including inversions, translocations and crossover-suppressors) are essential tools to maintain lethal or sterile mutations in heterozygotes. Recombination is suppressed within these chromosomal rearrange- ments. However, despite efforts to isolate genetic balancers since 19781–5, approximately 15% (map units) of the C. elegans genome has not been covered6 (Supplementary Fig. 1). Because the chromosomal rearrangements gen- erated by gamma-ray and X-ray mutagenesis are random, it is difficult to modify specific chromosomal regions. Here, we used the CRISPR/Cas9 genome editing system to solve this problem. The CRISPR/Cas9 system has enabled genomic engineering of specific DNA sequences and has been successfully applied to the generation of gene knock-outs and knock-ins in humans, rats, mice, zebrafish, flies and nematodes7. Recently, the CRISPR/ Cas9 system has been shown to induce inversions and translocations in human cell lines and mouse somatic cells8–10. -
Identification and Characterization of Breakpoints and Mutations on Drosophila Melanogaster Balancer Chromosomes
G3: Genes|Genomes|Genetics Early Online, published on September 24, 2020 as doi:10.1534/g3.120.401559 1 Identification and characterization of breakpoints and mutations on Drosophila 2 melanogaster balancer chromosomes 3 Danny E. Miller*, Lily Kahsai†, Kasun Buddika†, Michael J. Dixon†, Bernard Y. Kim‡, Brian R. 4 Calvi†, Nicholas S. Sokol†, R. Scott Hawley§** and Kevin R. Cook† 5 *Department of Pediatrics, Division of Genetic Medicine, University of Washington, and Seattle 6 Children's Hospital, Seattle, WA, 98105 7 †Department of Biology, Indiana University, Bloomington, IN 47405 8 ‡Department of Biology, Stanford University, Stanford, CA 94305 9 §Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 10 Kansas City, KS 66160 11 **Stowers Institute for Medical Research, Kansas City, MO 64110 12 ORCIDs: 0000-0001-6096-8601 (D.E.M.), 0000-0003-3429-445X (L.K.), 0000-0002-9872-4765 13 (K.B.), 0000-0003-0208-0641 (M.J.D.), 0000-0002-5025-1292 (B.Y.K.), 0000-0001-5304-0047 14 (B.R.C.), 0000-0002-2768-4102 (N.S.S.), 0000-0002-6478-0494 (R.S.H.), 0000-0001-9260- 15 364X (K.R.C.) 1 © The Author(s) 2020. Published by the Genetics Society of America. 16 Running title: Balancer breakpoints and phenotypes 17 18 Keywords: balancer chromosomes, chromosomal inversions, p53, Ankyrin 2, 19 Fucosyltransferase A 20 21 Corresponding author: Kevin R. Cook, Department of Biology, Indiana University, 1001 E. 22 Third St., Bloomington, IN 47405, 812-856-1213, [email protected] 23 2 24 ABSTRACT 25 Balancers are rearranged chromosomes used in Drosophila melanogaster to maintain 26 deleterious mutations in stable populations, preserve sets of linked genetic elements and 27 construct complex experimental stocks. -
Nonrandom Distribution of Interhomolog Recombination Events Induced by Breakage of a Dicentric Chromosome in Saccharomyces Cerevisiae
INVESTIGATION Nonrandom Distribution of Interhomolog Recombination Events Induced by Breakage of a Dicentric Chromosome in Saccharomyces cerevisiae Wei Song,* Malgorzata Gawel,* Margaret Dominska,* Patricia W. Greenwell,* Einat Hazkani-Covo,* Kerry Bloom,† and Thomas D. Petes*,1 *Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, and †Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 ABSTRACT Dicentric chromosomes undergo breakage in mitosis, resulting in chromosome deletions, duplications, and translocations. In this study, we map chromosome break sites of dicentrics in Saccharomyces cerevisiae by a mitotic recombination assay. The assay uses a diploid strain in which one homolog has a conditional centromere in addition to a wild-type centromere, and the other homolog has only the wild-type centromere; the conditional centromere is inactive when cells are grown in galactose and is activated when the cells are switched to glucose. In addition, the two homologs are distinguishable by multiple single-nucleotide polymorphisms (SNPs). Under conditions in which the conditional centromere is activated, the functionally dicentric chromosome undergoes double-stranded DNA breaks (DSBs) that can be repaired by mitotic recombination with the homolog. Such recombination events often lead to loss of heterozygosity (LOH) of SNPs that are centromere distal to the crossover. Using a PCR-based assay, we determined the position of LOH in multiple independent recombination events to a resolution of 4 kb. This analysis shows that dicentric chromosomes have re- combination breakpoints that are broadly distributed between the two centromeres, although there is a clustering of breakpoints within 10 kb of the conditional centromere. -
Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat
University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-12-2013 Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat Diseases Does Not Result from an Expression Feedback Loop Daniel Camacho University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Camacho, Daniel, "Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat Diseases Does Not Result from an Expression Feedback Loop" (2013). Honors Scholar Theses. 295. https://opencommons.uconn.edu/srhonors_theses/295 1 HONORS THESIS DIKAR-INDUCED SYNTHETIC LETHALITY IN A DROSOPHILA MODEL OF CAG REPEAT DISEASES DOES NOT RESULT FROM AN EXPRESSION FEEDBACK LOOP Presented by Daniel R. Camacho Department of Molecular and Cell Biology The University of Connecticut 2013 2 Abstract Human CAG repeat diseases manifest themselves through the common pathology of neurodeneration. This pathological link is attributed to the property shared by all nine of these diseases: an expanded polyglutamine (polyQ) tract. The most evident result of polyQ expansion is protein aggregation, and it is believed that this phenomenon is partly responsible for conferring cytotoxic properties on the mutated protein. Apart from sequestering the mutated protein, cellular aggregates are able to incorporate native proteins via polyQ-mediated aggregation, thus disrupting important cellular pathways. Using Drosophila melanogaster as a disease model, researchers have been able to compile collections of these so-called disease modifiers for most of the CAG repeat diseases. Moreover, a recently characterized Drosophila gene, Dikar, appears to synergistically react with polyQ-expanded proteins in an especially strong fashion, causing a synthetic lethal phenotype. -
Expandable and Reversible Copy Number Amplification Drives Rapid Adaptation to Antifungal Drugs Robert T Todd, Anna Selmecki*
RESEARCH ADVANCE Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs Robert T Todd, Anna Selmecki* Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States Abstract Previously, we identified long repeat sequences that are frequently associated with genome rearrangements, including copy number variation (CNV), in many diverse isolates of the human fungal pathogen Candida albicans (Todd et al., 2019). Here, we describe the rapid acquisition of novel, high copy number CNVs during adaptation to azole antifungal drugs. Single- cell karyotype analysis indicates that these CNVs appear to arise via a dicentric chromosome intermediate and breakage-fusion-bridge cycles that are repaired using multiple distinct long inverted repeat sequences. Subsequent removal of the antifungal drug can lead to a dramatic loss of the CNV and reversion to the progenitor genotype and drug susceptibility phenotype. These findings support a novel mechanism for the rapid acquisition of antifungal drug resistance and provide genomic evidence for the heterogeneity frequently observed in clinical settings. Introduction The evolution of antifungal drug resistance is an urgent threat to human health worldwide, particu- larly for hospitalized and immune-compromised individuals (Perea and Patterson, 2002; Pfal- ler, 2012; Vandeputte et al., 2012). Only three classes of antifungal drugs are currently available *For correspondence: [email protected] and resistance to all three classes occurred for the first time in the emerging fungal pathogen Can- dida auris (Chen and Sorrell, 2007; Ghannoum and Rice, 1999; Lockhart et al., 2017). Importantly, Competing interests: The the mechanisms and dynamics of acquired antifungal drug resistance, in vitro or in a patient under- authors declare that no going antifungal drug therapy, are not fully understood. -
Cytokinesis Breaks Dicentric Chromosomes Preferentially at Pericentromeric Regions and Telomere Fusions
Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Cytokinesis breaks dicentric chromosomes preferentially at pericentromeric regions and telomere fusions Virginia Lopez,1,2,5 Natalja Barinova,1,2,5 Masayuki Onishi,3 Sabrina Pobiega,1,2 John R. Pringle,3 Karine Dubrana,2,4 and Stephane Marcand1,2 1Laboratoire Telom eres et Reparation du Chromosome, Service InstabiliteG en etique Reparation et Recombinaison, Institut de Radiobiologie Moleculaire et Cellulaire, Commissariat a l’Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux- Roses, France; 2UMR967, Institut National de la Sante et de la Recherche Medicale, 92265 Fontenay-aux-Roses, France; 3Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA; 4Laboratoire Instabilite Gen etique et Organisation Nucleaire, Service InstabiliteG en etique Reparation et Recombinaison, Institut de Radiobiologie Moleculaire et Cellulaire, Commissariat a l’Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France Dicentric chromosomes are unstable products of erroneous DNA repair events that can lead to further genome rearrangements and extended gene copy number variations. During mitosis, they form anaphase bridges, resulting in chromosome breakage by an unknown mechanism. In budding yeast, dicentrics generated by telomere fusion break at the fusion, a process that restores the parental karyotype and protects cells from rare accidental telomere fusion. Here, we observed that dicentrics lacking telomere fusion preferentially break within a 25- to 30-kb-long region next to the centromeres. In all cases, dicentric breakage requires anaphase exit, ruling out stretching by the elongated mitotic spindle as the cause of breakage. Instead, breakage requires cytokinesis. -
Diatom Centromeres Suggest a Mechanism for Nuclear DNA Acquisition
Diatom centromeres suggest a mechanism for nuclear PNAS PLUS DNA acquisition Rachel E. Dinera,b, Chari M. Noddingsc, Nathan C. Lianc, Anthony K. Kangc, Jeffrey B. McQuaida,b, Jelena Jablanovicb, Josh L. Espinozab, Ngocquynh A. Nguyenc, Miguel A. Anzelmatti Jr.b, Jakob Janssonc, Vincent A. Bielinskic, Bogumil J. Karasc,1, Christopher L. Dupontb, Andrew E. Allena,b, and Philip D. Weymanc,2 aIntegrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037; bMicrobial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037; and cSynthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA 92037 Edited by James A. Birchler, Division of Biological Sciences, University of Missouri, Columbia, MO, and approved June 13, 2017 (received for review January 17, 2017) Centromeres are essential for cell division and growth in all eukary- transposons, which can vary substantially in copy number and otes, and knowledge of their sequence and structure guides the organization (16). A common feature of centromeric DNA in many development of artificial chromosomes for functional cellular biol- eukaryotes is low-GC content. Centromeres of Schizosaccharomyces ogy studies. Centromeric proteins are conserved among eukaryotes; pombe and other yeast species feature an unconserved core of AT- however, centromeric DNA sequences are highly variable. We rich DNA sequence often surrounded by inverted repeats (17–20). combined forward and reverse genetic approaches with chromatin The centromeres of the protist Plasmodium have no apparent se- immunoprecipitation to identify centromeres of the model diatom quence similarity besides being 2–4-kb regions of extremely low-GC Phaeodactylum tricornutum .