Identification and Characterization of Breakpoints and Mutations on Drosophila Melanogaster Balancer Chromosomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanisms and Impact of Post-Transcriptional Exon Shuffling
Mechanisms and impact of Post-Transcriptional Exon Shuffling (PTES) Ginikachukwu Osagie Izuogu Doctor of Philosophy Institute of Genetic Medicine Newcastle University September 2016 i ABSTRACT Most eukaryotic genes undergo splicing to remove introns and join exons sequentially to produce protein-coding or non-coding transcripts. Post-transcriptional Exon Shuffling (PTES) describes a new class of RNA molecules, characterized by exon order different from the underlying genomic context. PTES can result in linear and circular RNA (circRNA) molecules and enhance the complexity of transcriptomes. Prior to my studies, I developed PTESFinder, a computational tool for PTES identification from high-throughput RNAseq data. As various sources of artefacts (including pseudogenes, template-switching and others) can confound PTES identification, I first assessed the effectiveness of filters within PTESFinder devised to systematically exclude artefacts. When compared to 4 published methods, PTESFinder achieves the highest specificity (~0.99) and comparable sensitivity (~0.85). To define sub-cellular distribution of PTES, I performed in silico analyses of data from various cellular compartments and revealed diverse populations of PTES in nuclei and enrichment in cytosol of various cell lines. Identification of PTES from chromatin-associated RNAseq data and an assessment of co-transcriptional splicing, established that PTES may occur during transcription. To assess if PTES contribute to the proteome, I analyzed sucrose-gradient fractionated data from HEK293, treated with arsenite to induce translational arrest and dislodge ribosomes. My results showed no effect of arsenite treatment on ribosome occupancy within PTES transcripts, indicating that these transcripts are not generally bound by polysomes and do not contribute to the proteome. -
"Evolutionary Emergence of Genes Through Retrotransposition"
Evolutionary Emergence of Advanced article Genes Through Article Contents . Introduction Retrotransposition . Gene Alteration Following Retrotransposon Insertion . Retrotransposon Recruitment by Host Genome . Retrotransposon-mediated Gene Duplication Richard Cordaux, University of Poitiers, Poitiers, France . Conclusion Mark A Batzer, Department of Biological Sciences, Louisiana State University, Baton Rouge, doi: 10.1002/9780470015902.a0020783 Louisiana, USA Variation in the number of genes among species indicates that new genes are continuously generated over evolutionary times. Evidence is accumulating that transposable elements, including retrotransposons (which account for about 90% of all transposable elements inserted in primate genomes), are potent mediators of new gene origination. Retrotransposons have fostered genetic innovation during human and primate evolution through: (i) alteration of structure and/or expression of pre-existing genes following their insertion, (ii) recruitment (or domestication) of their coding sequence by the host genome and (iii) their ability to mediate gene duplication via ectopic recombination, sequence transduction and gene retrotransposition. Introduction genes, respectively, and de novo origination from previ- ously noncoding genomic sequence. Genome sequencing Variation in the number of genes among species indicates projects have also highlighted that new gene structures can that new genes are continuously generated over evolution- arise as a result of the activity of transposable elements ary times. Although the emergence of new genes and (TEs), which are mobile genetic units or ‘jumping genes’ functions is of central importance to the evolution of that have been bombarding the genomes of most species species, studies on the formation of genetic innovations during evolution. For example, there are over three million have only recently become possible. -
The Joy of Balancers
REVIEW The joy of balancers 1,2 3 4,5 Danny E. MillerID *, Kevin R. Cook , R. Scott HawleyID * 1 Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America, 2 Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington and Seattle Children's Hospital, Seattle, Washington, United States of America, 3 Department of Biology, Indiana University, Bloomington, Indiana, United States of America, 4 Stowers Institute for Medical Research, Kansas City, Missouri, United States of America, 5 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America * [email protected] (DEM); [email protected] (RSH) Abstract Balancer chromosomes are multiply inverted and rearranged chromosomes that are widely used in Drosophila genetics. First described nearly 100 years ago, balancers are used extensively in stock maintenance and complex crosses. Recently, the complete molecular a1111111111 structures of several commonly used balancers were determined by whole-genome a1111111111 sequencing. This revealed a surprising amount of variation among balancers derived from a a1111111111 a1111111111 common progenitor, identified genes directly affected by inversion breakpoints, and cata- a1111111111 loged mutations shared by balancers. These studies emphasized that it is important to choose the optimal balancer, because different inversions suppress meiotic recombination in different chromosomal regions. In this review, we provide a brief history of balancers in Drosophila, discuss how they are used today, and provide examples of unexpected recom- bination events involving balancers that can lead to stock breakdown. OPEN ACCESS Citation: Miller DE, Cook KR, Hawley RS (2019) The joy of balancers. -
Additional Miscellaneous Information About Drosophila
Supplemental handout Background on flies Spring, 2013 --------------------------------------------- Miscellaneous useful information about Drosophila A diploid Drosopihila melanogaster fruit fly has two sex chromosomes (XX in the female and XY in the male) and three pairs of autosomes, designated chromosomes 2, 3 and 4; the X is designated chromosome 1. Chromosome 4 is very small. The X is telocentric, meaning that the centromere is at one end. Centromeric heterochromatin is not amplified in polytene nuclei, and all polytene chromosomes are attached to the chromocenter (unamplified heterochromatin), so that a good squash of a polytene nucleus shows five arms extending from a central point. These arms are the euchromatic portions of X, 2L, 2R, 3L and 3R. The pattern of bands is reproducible, and Calvin Bridges devised a nomenclature for them in the 1930's. Each major chromosome arm is divided into 20 numbered sections (X = 1-20, 2L = 21-40, 2R = 41-60, 3L = 61-80, 3R = 81-100 and 4 = 101-102). Each numbered unit is divided into six lettered regions, A-F, and each letter into some number of bands, depending on what Bridges saw. The correlation of these polytene maps and cloned DNA can be accomplished by in situ hybridization, and polytene maps can be correlated with genetic maps based on recombination by testing for complementation between mutant alleles and cytologically visible deletions. A summary of such correlated information is available on Flybase and links available through Flybase. Genes are given a full name, like speck, and a symbol, like sp. In general, gene symbols are capitalized if the original allele was dominant. -
Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster Zane Bryant Coleman University of Mississippi
University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2018 Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster Zane Bryant Coleman University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the Biology Commons Recommended Citation Coleman, Zane Bryant, "Determination of the Chromosomal Position of Three Mutations Using Recombination Mapping in Drosophila Melanogaster" (2018). Honors Theses. 978. https://egrove.olemiss.edu/hon_thesis/978 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. DETERMINATION OF THE CHROMOSOMAL POSITION OF THREE MUTATIONS USING RECOMBINATION MAPPING IN DROSOPHILA MELANOGASTER by Zane Bryant Coleman A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 2018 Approved by ____________________________________ Advisor: Dr. Bradley Jones ____________________________________ Reader: Dr. Joshua Bloomekatz ____________________________________ Reader: Dr. Colin Jackson Ó 2018 Zane Bryant Coleman ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS I would like to thank Dr. Jones for allowing me to work in his lab, mentoring me throughout my college career, and helping me during the research process. Through patience and understanding, Dr. Jones has molded me into a scientist capable of overcoming obstacles. I would also like to thank Drs. Bloomekatz and Jackson for participating as readers. -
Engineering New Balancer Chromosomes in C. Elegans Via
www.nature.com/scientificreports OPEN Engineering new balancer chromosomes in C. elegans via CRISPR/Cas9 Received: 19 May 2016 Satoru Iwata1, Sawako Yoshina1, Yuji Suehiro1, Sayaka Hori1 & Shohei Mitani1,2 Accepted: 02 September 2016 Balancer chromosomes are convenient tools used to maintain lethal mutations in heterozygotes. We Published: 21 September 2016 established a method for engineering new balancers in C. elegans by using the CRISPR/Cas9 system in a non-homologous end-joining mutant. Our studies will make it easier for researchers to maintain lethal mutations and should provide a path for the development of a system that generates rearrangements at specific sites of interest to model and analyse the mechanisms of action of genes. Genetic balancers (including inversions, translocations and crossover-suppressors) are essential tools to maintain lethal or sterile mutations in heterozygotes. Recombination is suppressed within these chromosomal rearrange- ments. However, despite efforts to isolate genetic balancers since 19781–5, approximately 15% (map units) of the C. elegans genome has not been covered6 (Supplementary Fig. 1). Because the chromosomal rearrangements gen- erated by gamma-ray and X-ray mutagenesis are random, it is difficult to modify specific chromosomal regions. Here, we used the CRISPR/Cas9 genome editing system to solve this problem. The CRISPR/Cas9 system has enabled genomic engineering of specific DNA sequences and has been successfully applied to the generation of gene knock-outs and knock-ins in humans, rats, mice, zebrafish, flies and nematodes7. Recently, the CRISPR/ Cas9 system has been shown to induce inversions and translocations in human cell lines and mouse somatic cells8–10. -
Origins of New Genes: Exon Shuffling
OriginsOrigins ofof NewNew Genes:Genes: ExonExon ShufflingShuffling By Carl Hillstrom 1 • The talk is about how the shuffling of exons can give rise to new genes. 2 MerriamMerriam--WebsterWebster OnlineOnline DictionaryDictionary Main Entry: ex·on Pronunciation: 'ek-"sän Function: noun : a polynucleotide sequence in a nucleic acid that codes information for protein synthesis and that is copied and spliced together with other such sequences to form messenger RNA -- compare INTRON http://www.m-w.com/dictionary/exon 3 ExonExon shufflingshuffling Recombination, exclusion, or duplications of exons can drive the evolution of new genes. The general idea of exon shuffling is typically attributed to Walter Gilbert (e.g. Long et al. 2003) The definition of exon shuffling used in this presentation encompass: --exon assumes a new function after it has been moved --exon retains its original function after it has been moved 4 • So what is exon shuffling? • It is basically the idea that recombination or exclusion of exons can drive the evolution of new genes. “Recombination, exclusion, or duplications of exons can drive the evolution of new genes.” –this is a very general definition that I have adopted for the purpose of this presentation. • The definition of exon shuffling used in this presentation encompass: • --exon assumes a new function after it has been moved • --exon retains its original function after it has been moved • there is disagreement whether exon shuffling applies to both of these definition—for simplicity, I will use the concept of exon shuffling as if it applies to both of these definitions 5 OutlineOutline ofof aa typicaltypical antibodyantibody Alberts et al. -
L1 Retrotransposition Is a Common Feature of Mammalian Hepatocarcinogenesis
Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Research L1 retrotransposition is a common feature of mammalian hepatocarcinogenesis Stephanie N. Schauer,1,12 Patricia E. Carreira,1,12 Ruchi Shukla,2,12 Daniel J. Gerhardt,1,3 Patricia Gerdes,1 Francisco J. Sanchez-Luque,1,4 Paola Nicoli,5 Michaela Kindlova,1 Serena Ghisletti,6 Alexandre Dos Santos,7,8 Delphine Rapoud,7,8 Didier Samuel,7,8 Jamila Faivre,7,8,9 Adam D. Ewing,1 Sandra R. Richardson,1 and Geoffrey J. Faulkner1,10,11 1Mater Research Institute–University of Queensland, Woolloongabba, QLD 4102, Australia; 2Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; 3Invenra, Incorporated, Madison, Wisconsin 53719, USA; 4Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada- Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; 5Department of Experimental Oncology, European Institute of Oncology, 20146 Milan, Italy; 6Humanitas Clinical and Research Center, 20089 Milan, Italy; 7INSERM, U1193, Paul- Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France; 8Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France; 9Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif 94800, France; 10School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia; 11Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) is a continuing source of germline and somatic mutagenesis in mammals. Deregulated L1 activity is a hallmark of cancer, and L1 mutagenesis has been described in numerous human malignancies. -
INTRINSIC and EXTRINSIC EVOLUTION of HELITRONS in FLOWERING PLANT GENOMES by LIXING YANG (Under the Direction of Jeffrey L. Benn
INTRINSIC AND EXTRINSIC EVOLUTION OF HELITRONS IN FLOWERING PLANT GENOMES by LIXING YANG (Under the Direction of Jeffrey L. Bennetzen) ABSTRACT Helitrons are a recently discovered class of eukaryotic transposable elements that are believed to transpose by a rolling circle mechanism. Because Helitrons frequently acquire and fuse fragments of multiple genes, they may be major contributors to the creation of novel genes by exon shuffling. This dissertation provides a comprehensive study of Helitrons in flowering plant genomes including their identification in several different genomes, their structural features, and their roles in genome evolution. Helitrons can be difficult to identify because they have few and tiny conserved structures. We developed a new approach to effectively identify Helitrons (tested in Arabidopsis and nematodes) and further refined and demonstrated this approach on a few completely sequenced plant genomes (Medicago, rice and sorghum). We discovered a large number of new elements and new element families, and also a few new Helitron characteristics. We identified initiation and termination bypass events that led to new 5′ or 3′ ends that created newly active families and subfamilies of Helitrons. We found that Helitrons preferentially insert into AT-rich regions, that they prefer to insert near other Helitrons, and that the predicted hairpins near their 3′ ends would have high predicted melting temperatures. Maize Helitrons are known to acquire gene fragments frequently. With the completion of the maize genome sequencing project this year, we were able to perform a large-scale search for Helitrons in the maize genome. We discovered 1930 intact elements in the maize genome, and were able to predict more than 20,000 total elements that account for just over 2% of the sequence assembly. -
Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat
University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-12-2013 Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat Diseases Does Not Result from an Expression Feedback Loop Daniel Camacho University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Camacho, Daniel, "Dikar-Induced Synthetic Lethality in a Drosophila Model of CAG Repeat Diseases Does Not Result from an Expression Feedback Loop" (2013). Honors Scholar Theses. 295. https://opencommons.uconn.edu/srhonors_theses/295 1 HONORS THESIS DIKAR-INDUCED SYNTHETIC LETHALITY IN A DROSOPHILA MODEL OF CAG REPEAT DISEASES DOES NOT RESULT FROM AN EXPRESSION FEEDBACK LOOP Presented by Daniel R. Camacho Department of Molecular and Cell Biology The University of Connecticut 2013 2 Abstract Human CAG repeat diseases manifest themselves through the common pathology of neurodeneration. This pathological link is attributed to the property shared by all nine of these diseases: an expanded polyglutamine (polyQ) tract. The most evident result of polyQ expansion is protein aggregation, and it is believed that this phenomenon is partly responsible for conferring cytotoxic properties on the mutated protein. Apart from sequestering the mutated protein, cellular aggregates are able to incorporate native proteins via polyQ-mediated aggregation, thus disrupting important cellular pathways. Using Drosophila melanogaster as a disease model, researchers have been able to compile collections of these so-called disease modifiers for most of the CAG repeat diseases. Moreover, a recently characterized Drosophila gene, Dikar, appears to synergistically react with polyQ-expanded proteins in an especially strong fashion, causing a synthetic lethal phenotype. -
Living Organisms Author Their Read-Write Genomes in Evolution
biology Review Living Organisms Author Their Read-Write Genomes in Evolution James A. Shapiro ID Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA; [email protected]; Tel.: +1-773-702-1625 Academic Editor: Andrés Moya Received: 23 August 2017; Accepted: 28 November 2017; Published: 6 December 2017 Abstract: Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with “non-coding” DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called “non-coding” RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations. -
Alternative Splicing and Evolution: Diversification, Exon Definition and Function
Nature Reviews Genetics | AOP, published online 8 April 2010; doi:10.1038/nrg2776 REVIEWS Alternative splicing and evolution: diversification, exon definition and function Hadas Keren, Galit Lev-Maor and Gil Ast Abstract | Over the past decade, it has been shown that alternative splicing (AS) is a major mechanism for the enhancement of transcriptome and proteome diversity, particularly in mammals. Splicing can be found in species from bacteria to humans, but its prevalence and characteristics vary considerably. Evolutionary studies are helping to address questions that are fundamental to understanding this important process: how and when did AS evolve? Which AS events are functional? What are the evolutionary forces that shaped, and continue to shape, AS? And what determines whether an exon is spliced in a constitutive or alternative manner? In this Review, we summarize the current knowledge of AS and evolution and provide insights into some of these unresolved questions. Spliceosome Splicing of precursor mRNA (pre-mRNA) is a crucial regulated at many different levels, often in a tissue- or A ribonucleoprotein complex regulatory stage in the pathway of gene expression: developmental stage-specific manner. At a basic level, that is involved in splicing introns are removed and exons are ligated to form regulation includes splice-site recognition by the of nuclear precursor mRNA mRNA. The inclusion of different exons in mRNA — spliceosome, which is mediated by various proteins. (pre-mRNA). It is composed of five small nuclear alternative splicing (AS) — results in the generation of Additional regulatory levels include environmental ribonucleoproteins (snRNPs) different isoforms from a single gene and is the basis changes that affect splice-site choice and the relationship and more than 50 non-snRNPs, for the discrepancy between the estimated 24,000 among transcription by RNA polymerase II (RNAPII), which recognize and assemble protein-coding genes in the human genome and the nucleosome occupancy and splicing7–10.